DOI QR코드

DOI QR Code

Pediatric Heart Failure: Current State and Future Possibilities

  • Rossano, Joseph W. (The Cardiac Center, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania) ;
  • Jang, Gi Young (Department of Pediatrics, Korea University Hospital)
  • Received : 2014.07.11
  • Accepted : 2014.10.07
  • Published : 2015.01.30

Abstract

Heart failure is a complex pathophysiological syndrome that can occur in children from a variety of diseases, including cardiomyopathies, myocarditis, and congenital heart disease. The condition is associated with a high rate of morbidity and mortality and places a significant burden on families of affected children and to society as a whole. Current medical therapy is taken largely from the management of heart failure in adults, though clear survival benefit of these medications are lacking. Ventricular assist devices (VADs) have taken an increasingly important role in the management of advanced heart failure in children. The predominant role of these devices has been as a bridge to heart transplantation, and excellent results are currently achieved for most children with cardiomyopathies. There is an ongoing investigation to improve outcomes in high-risk populations, such as small infants and those with complex congenital heart disease, including patients with functionally univentricular hearts. Additionally, there is an active investigation and interest in expansion of VADs beyond the predominant utilization as a bridge to a heart transplant into ventricular recovery, device explant without a heart transplantation (bridge to recovery), and placement of devices without the expectation of recovery or transplantation (destination therapy).

Keywords

References

  1. Kirk R, Dipchand AI, Rosenthal DN, et al. The International Society of Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: executive summary. J Heart Lung Transplant 2014;33:888-909. https://doi.org/10.1016/j.healun.2014.06.002
  2. Choi DJ, Han S, Jeon ES, et al. Characteristics, outcomes and predictors of long-term mortality for patients hospitalized for acute heart failure: a report from the Korean heart failure registry. Korean Circ J 2011;41:363-71. https://doi.org/10.4070/kcj.2011.41.7.363
  3. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014;129:e28-292. https://doi.org/10.1161/CIRCULATIONAHA.113.003961
  4. Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA 2004;292:344-50. https://doi.org/10.1001/jama.292.3.344
  5. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 2013;6:606-19. https://doi.org/10.1161/HHF.0b013e318291329a
  6. Tavazzi L, Senni M, Metra M, et al. Multicenter prospective observational study on acute and chronic heart failure: one-year follow-up results of IN-HF (Italian Network on Heart Failure) outcome registry. Circ Heart Fail 2013;6:473-81. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000161
  7. Shiba N, Shimokawa H. Chronic heart failure in Japan: implications of the CHART studies. Vasc Health Risk Manag 2008;4:103-13. https://doi.org/10.2147/vhrm.2008.04.01.103
  8. McMurray JJ, Stewart S. Epidemiology, aetiology, and prognosis of heart failure. Heart 2000;83:596-602. https://doi.org/10.1136/heart.83.5.596
  9. Massin MM, Astadicko I, Dessy H. Epidemiology of heart failure in a tertiary pediatric center. Clin Cardiol 2008;31:388-91. https://doi.org/10.1002/clc.20262
  10. Rossano JW, Kim JJ, Decker JA, et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail 2012;18:459-70. https://doi.org/10.1016/j.cardfail.2012.03.001
  11. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis*. Pediatr Crit Care Med 2013;14:686-93. https://doi.org/10.1097/PCC.0b013e3182917fad
  12. Nandi D, Lin KY, O’Connor MJ, et al. Hospital charges for pediatric heart failure related hospitalization in the United States from 200-2009. J Am Coll Cardiol 2014;33:S84. Abstract.
  13. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 2003;348:1647-55. https://doi.org/10.1056/NEJMoa021715
  14. Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 2003;348:1639-46. https://doi.org/10.1056/NEJMoa021737
  15. Andrews RE, Fenton MJ, Ridout DA, Burch M; British Congenital Cardiac Association. New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation 2008;117:79-84. https://doi.org/10.1161/CIRCULATIONAHA.106.671735
  16. Daubeney PE, Nugent AW, Chondros P, et al. Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation 2006;114:2671-8. https://doi.org/10.1161/CIRCULATIONAHA.106.635128
  17. Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006;296:1867-76. https://doi.org/10.1001/jama.296.15.1867
  18. Kantor PF, Abraham JR, Dipchand AI, Benson LN, Redington AN. The impact of changing medical therapy on transplantation-free survival in pediatric dilated cardiomyopathy. J Am Coll Cardiol 2010;55:1377-84. https://doi.org/10.1016/j.jacc.2009.11.059
  19. Alexander PM, Daubeney PE, Nugent AW, et al. Long-term outcomes of dilated cardiomyopathy diagnosed during childhood: results from a national population-based study of childhood cardiomyopathy. Circulation 2013;128:2039-46. https://doi.org/10.1161/CIRCULATIONAHA.113.002767
  20. O’Sullivan JJ, Roche SL, Crossland DS, Chaudhari MP, Kirk RC, Asif H. Recovery of heart function in children with acute severe heart failure. Transplantation 2008;85:975-9. https://doi.org/10.1097/TP.0b013e318168fe3c
  21. Everitt MD, Sleeper LA, Lu M, et al. Recovery of echocardiographic function in children with idiopathic dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. J Am Coll Cardiol 2014;63:1405-13. https://doi.org/10.1016/j.jacc.2013.11.059
  22. Macicek SM, Macias CG, Jefferies JL, Kim JJ, Price JF. Acute heart failure syndromes in the pediatric emergency department. Pediatrics 2009;124:e898-904. https://doi.org/10.1542/peds.2008-2198
  23. Wong DT, George K, Wilson J, et al. Effectiveness of serial increases in amino-terminal pro-B-type natriuretic peptide levels to indicate the need for mechanical circulatory support in children with acute decompensated heart failure. Am J Cardiol 2011;107:573-8. https://doi.org/10.1016/j.amjcard.2010.10.015
  24. Price JF, Thomas AK, Grenier M, et al. B-type natriuretic peptide predicts adverse cardiovascular events in pediatric outpatients with chronic left ventricular systolic dysfunction. Circulation 2006;114:1063-9. https://doi.org/10.1161/CIRCULATIONAHA.105.608869
  25. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013;309:896-908. https://doi.org/10.1001/jama.2013.1363
  26. Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 2012;5:726-33. https://doi.org/10.1161/CIRCIMAGING.112.976738
  27. Hershberger RE, Lindenfeld J, Mestroni L, et al. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. J Card Fail 2009;15:83-97. https://doi.org/10.1016/j.cardfail.2009.01.006
  28. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 1991;325:293-302. https://doi.org/10.1056/NEJM199108013250501
  29. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344:1651-8. https://doi.org/10.1056/NEJM200105313442201
  30. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial--the Losartan Heart Failure Survival Study ELITE II. Lancet 2000;355:1582-7. https://doi.org/10.1016/S0140-6736(00)02213-3
  31. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709-17. https://doi.org/10.1056/NEJM199909023411001
  32. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET):randomised controlled trial. Lancet 2003;362:7-13. https://doi.org/10.1016/S0140-6736(03)13800-7
  33. Hsu DT, Zak V, Mahony L, et al. Enalapril in infants with single ventricle:results of a multicenter randomized trial. Circulation 2010;122:333-40. https://doi.org/10.1161/CIRCULATIONAHA.109.927988
  34. Shaddy RE, Boucek MM, Hsu DT, et al. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 2007;298:1171-9. https://doi.org/10.1001/jama.298.10.1171
  35. Dore A, Houde C, Chan KL, et al. Angiotensin receptor blockade and exercise capacity in adults with systemic right ventricles: a multicenter, randomized, placebo-controlled clinical trial. Circulation 2005;112:2411-6. https://doi.org/10.1161/CIRCULATIONAHA.105.543470
  36. Hechter SJ, Fredriksen PM, Liu P, et al. Angiotensin-converting enzyme inhibitors in adults after the Mustard procedure. Am J Cardiol 2001;87:660-3, A11. https://doi.org/10.1016/S0002-9149(00)01452-1
  37. van der Bom T, Winter MM, Bouma BJ, et al. Effect of valsartan on systemic right ventricular function: a double-blind, randomized, placebo-controlled pilot trial. Circulation 2013;127:322-30. https://doi.org/10.1161/CIRCULATIONAHA.112.135392
  38. Rossano JW, Shaddy RE. Update on pharmacological heart failure therapies in children: do adult medications work in children and if not, why not? Circulation 2014;129:607-12. https://doi.org/10.1161/CIRCULATIONAHA.113.003615
  39. Stauffer BL, Russell G, Nunley K, Miyamoto SD, Sucharov CC. miRNA expression in pediatric failing human heart. J Mol Cell Cardiol 2013;57:43-6. https://doi.org/10.1016/j.yjmcc.2013.01.005
  40. Miyamoto SD, Stauffer BL, Nakano S, et al. Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. Eur Heart J 2014;35:33-41. https://doi.org/10.1093/eurheartj/ehs229
  41. Bernstein D, Fajardo G, Zhao M. The role of ${\beta}$-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol 2011;31:35-8. https://doi.org/10.1016/j.ppedcard.2010.11.007
  42. Reddy S, Zhao M, Hu DQ, et al. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 2012;44:562-75. https://doi.org/10.1152/physiolgenomics.00163.2011
  43. Albers S, Meibohm B, Mir TS, Laer S. Population pharmacokinetics and dose simulation of carvedilol in paediatric patients with congestive heart failure. Br J Clin Pharmacol 2008;65:511-22. https://doi.org/10.1111/j.1365-2125.2007.03046.x
  44. Kwon HW, Kwon BS, Kim GB, et al. The effect of enalapril and carvedilol on left ventricular dysfunction in middle childhood and adolescent patients with muscular dystrophy. Korean Circ J 2012;42:184-91. https://doi.org/10.4070/kcj.2012.42.3.184
  45. Jefferies JL, Eidem BW, Belmont JW, et al. Genetic predictors and remodeling of dilated cardiomyopathy in muscular dystrophy. Circulation 2005;112:2799-804. https://doi.org/10.1161/CIRCULATIONAHA.104.528281
  46. Duboc D, Meune C, Pierre B, et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years' follow-up. Am Heart J 2007;154:596-602. https://doi.org/10.1016/j.ahj.2007.05.014
  47. Viollet L, Thrush PT, Flanigan KM, Mendell JR, Allen HD. Effects of angiotensin-converting enzyme inhibitors and/or beta blockers on the cardiomyopathy in Duchenne muscular dystrophy. Am J Cardiol 2012;110:98-102. https://doi.org/10.1016/j.amjcard.2012.02.064
  48. Duboc D, Meune C, Lerebours G, Devaux JY, Vaksmann G, Becane HM. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 2005;45:855-7. https://doi.org/10.1016/j.jacc.2004.09.078
  49. Kantor PF, Lougheed J, Dancea A, et al. Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can J Cardiol 2013;29:1535-52. https://doi.org/10.1016/j.cjca.2013.08.008
  50. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 1991;325:1468-75. https://doi.org/10.1056/NEJM199111213252103
  51. Abraham WT, Adams KF, Fonarow GC, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol 2005;46:57-64. https://doi.org/10.1016/j.jacc.2005.03.051
  52. Price JF, Mott AR, Dickerson HA, et al. Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care Med 2008;9:279-84. https://doi.org/10.1097/PCC.0b013e31816c6ed1
  53. Cuffe MS, Califf RM, Adams KF Jr, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 2002;287:1541-7. https://doi.org/10.1001/jama.287.12.1541
  54. Shamszad P, Hall M, Rossano JW, et al. Characteristics and outcomes of heart failure-related intensive care unit admissions in children with cardiomyopathy. J Card Fail 2013;19:672-7. https://doi.org/10.1016/j.cardfail.2013.08.006
  55. Wittlieb-Weber CA, Lin KY, Zaoutis TE, et al. Pediatric versus adult cardiomyopathy and heart failure related hospitlaizations: a valuebased analysis. Circulation 2014;128:A11498. Abstract.
  56. Morales DL, Almond CS, Jaquiss RD, et al. Bridging children of all sizes to cardiac transplantation: the initial multicenter North American experience with the Berlin Heart EXCOR ventricular assist device. J Heart Lung Transplant 2011;30:1-8. https://doi.org/10.1016/j.healun.2010.08.033
  57. Rossano JW, Mott AR, Mohamad Z, et al. Decreasing mortality of ventricular assist devices at children’s hospitals from 2000-2010: improvement at a cost (abstract). Circulation 2012;126:A11553.
  58. Almond CS, Thiagarajan RR, Piercey GE, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation 2009;119:717-27. https://doi.org/10.1161/CIRCULATIONAHA.108.815712
  59. Benden C, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: Sixteenth Official Pediatric Lung and Heart-Lung Transplantation Report--2013; focus theme: age. J Heart Lung Transplant 2013;32:989-97. https://doi.org/10.1016/j.healun.2013.08.008
  60. Hetzer R, Alexi-Meskishvili V, Weng Y, et al. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years' experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2006:99-108.
  61. Imamura M, Dossey AM, Prodhan P, et al. Bridge to cardiac transplant in children: Berlin Heart versus extracorporeal membrane oxygenation. Ann Thorac Surg 2009;87:1894-901; discussion 1901. https://doi.org/10.1016/j.athoracsur.2009.03.049
  62. Fraser CD Jr, Jaquiss RD, Rosenthal DN, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med 2012;367:532-41. https://doi.org/10.1056/NEJMoa1014164
  63. Kirklin JK, Naftel DC, Kormos RL, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant 2013;32:141-56. https://doi.org/10.1016/j.healun.2012.12.004
  64. Cabrera AG, Sundareswaran KS, Samayoa AX, et al. Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. J Heart Lung Transplant 2013;32:1107-13. https://doi.org/10.1016/j.healun.2013.07.012
  65. Miera O, Potapov EV, Redlin M, et al. First experiences with the Heart-Ware ventricular assist system in children. Ann Thorac Surg 2011;91:1256-60. https://doi.org/10.1016/j.athoracsur.2010.12.013
  66. Padalino MA, Bottio T, Tarzia V, et al. HeartWare ventricular assist device as bridge to transplant in children and adolescents. Artif Organs 2014;38:418-22. https://doi.org/10.1111/aor.12185
  67. Baldwin JT, Borovetz HS, Duncan BW, Gartner MJ, Jarvik RK, Weiss WJ. The national heart, lung, and blood institute pediatric circulatory support program: a summary of the 5-year experience. Circulation 2011;123:1233-40. https://doi.org/10.1161/CIRCULATIONAHA.110.978023
  68. Rossano JW, Goldberg DJ, Fuller S, Ravishankar C, Montenegro LM, Gaynor JW. Successful use of the total artificial heart in the failing Fontan circulation. Ann Thorac Surg 2014;97:1438-40. https://doi.org/10.1016/j.athoracsur.2013.06.120
  69. VanderPluym CJ, Rebeyka IM, Ross DB, Buchholz H. The use of ventricular assist devices in pediatric patients with univentricular hearts. J Thorac Cardiovasc Surg 2011;141:588-90. https://doi.org/10.1016/j.jtcvs.2010.06.038
  70. Rossano JW, Lin KY, Paridon SM, et al. Pediatric heart transplantation from donors with depressed ventricular function: an analysis of the United Network of Organ Sharing Database. Circ Heart Fail 2013;6:1223-9. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000029
  71. Cha MJ, Lee HY, Cho HJ, Hwang HY, Kim KB, Oh BH. Under-utilization of donor hearts in the initial era of the heart transplant program in Korea- review of 13 years’ experience from the Korea national registry. Circ J 2013;77:2056-63. https://doi.org/10.1253/circj.CJ-12-1269
  72. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001;345:1435-43. https://doi.org/10.1056/NEJMoa012175
  73. Amodeo A, Adorisio R. Left ventricular assist device in Duchenne cardiomyopathy: can we change the natural history of cardiac disease? Int J Cardiol 2012;161:e43. https://doi.org/10.1016/j.ijcard.2012.04.009
  74. Birks EJ, Tansley PD, Hardy J, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 2006;355:1873-84. https://doi.org/10.1056/NEJMoa053063
  75. Drakos SG, Kfoury AG, Stehlik J, et al. Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation 2012;126:230-41. https://doi.org/10.1161/CIRCULATIONAHA.111.040261
  76. Vatta M, Stetson SJ, Jimenez S, et al. Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow-type ventricular assist devices. J Am Coll Cardiol 2004;43:811-7. https://doi.org/10.1016/j.jacc.2003.09.052
  77. Wilmot I, Morales DL, Price JF, et al. Effectiveness of mechanical circulatory support in children with acute fulminant and persistent myocarditis. J Card Fail 2011;17:487-94. https://doi.org/10.1016/j.cardfail.2011.02.008
  78. Morales DL, Braud BE, Price JF, et al. Use of mechanical circulatory support in pediatric patients with acute cardiac graft rejection. ASAIO J 2007;53:701-5. https://doi.org/10.1097/MAT.0b013e31815d68bf
  79. Irving CA, Crossland DS, Haynes S, Griselli M, Hasan A, Kirk R. Evolving experience with explantation from Berlin Heart EXCOR ventricular assist device support in children. J Heart Lung Transplant 2014;33:211-3. https://doi.org/10.1016/j.healun.2013.10.001

Cited by

  1. The importance of renal function for the management of the sick newborn with congenital heart disease vol.41, pp.None, 2015, https://doi.org/10.1016/j.ppedcard.2015.12.002
  2. Miniature Rotary Blood Pumps for Use in Pediatric Cardiac Surgery vol.50, pp.5, 2015, https://doi.org/10.1007/s10527-017-9640-8
  3. Cardiac Protection of Valsartan on Juvenile Rats with Heart Failure by Inhibiting Activity of CaMKII via Attenuating Phosphorylation vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/4150158
  4. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure vol.27, pp.1, 2015, https://doi.org/10.1017/s1047951116000196
  5. A critical appraisal of the tafazzin knockdown mouse model of Barth syndrome: what have we learned about pathogenesis and potential treatments? vol.317, pp.6, 2019, https://doi.org/10.1152/ajpheart.00504.2019