References
- Abu Bakar MR, Salah KA, Ibrahim NA, et al (2008). Cure fraction, modelling and estimating in a population-based cancer survival analysis. Malaysian J Mathematical Sciences, 2, 113-34.
- Achcar JA, Coelho-Barros EA, Mazucheli J (2012). Cure fraction models using mixture and non-mixture models. Tatra Mountains Mathematical Publications, 51, 1-9. https://doi.org/10.2478/v10127-012-0001-4
- Akhlaghi AA, Najafi I, Mahmoodi M, et al (2013). Survival analysis of iranian patients undergoing continuous ambulatory peritoneal dialysis using cure model. J Research in Health Sci, 13, 32-6.
- Andersson TM, Dickman PW, Eloranta S, et al (2011). Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Med Res Methodol, 11, 96. https://doi.org/10.1186/1471-2288-11-96
- Arano I, Sugimoto T, Hamasaki T, et al (2010). Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder. BMC Med Res Methodol, 10, 33. https://doi.org/10.1186/1471-2288-10-33
- Asano J, Hirakawa A, Hamada C (2014). Assessing the prediction accuracy of cure in the Cox proportional hazards cure model: an application to breast cancer data. Pharmaceutical statistics, 13, 357-63. https://doi.org/10.1002/pst.1630
- Boag JW (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society. Series B (Methodological), 11, 15-53.
- Borges P, Rodrigues J, Louzada F, et al (2012). A cure rate survival model under a hybrid latent activation scheme. Statistical methods in medical research, 0962280212469682.
- Chen M-H, Ibrahim JG, Sinha D (1999). A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association, 94, 909-19. https://doi.org/10.1080/01621459.1999.10474196
- Corbiere F, Joly P (2007). A SAS macro for parametric and semiparametric mixture cure models. Computer Methods And Programs In Biomedicine, 85, 173-80. https://doi.org/10.1016/j.cmpb.2006.10.008
- Cox DR (1972). Regression models and life tables (with discussion). journal of the royal statistical society, series b, 34, 187-220.
- Jafari-Koshki T, Mansourian M, Mokarian F (2014). Exploring factors related to metastasis free survival in breast cancer patients using bayesian cure models. Asian Pac J Cancer Prev, 15, 9673. https://doi.org/10.7314/APJCP.2014.15.22.9673
- Kim S, Zeng D, Li Y, et al (2013). Joint Modeling of longitudinal and cure-survival data. J Statistical theory and Practice, 7, 324-44. https://doi.org/10.1080/15598608.2013.772036
- Lambert PC (2007). Modeling of the cure fraction in survival studies. Stata Journal, 7, 351.
- Lambert PC, Thompson JR, Weston CL, et al (2007). Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics, 8, 576-94. https://doi.org/10.1093/biostatistics/kxl030
- Maller RA, Zhou X 1996. Survival Analysis with Long-Term Survivors, Wiley.
- Ortega EM, Barriga GD, Hashimoto EM, et al (2014). A new class of survival regression models with cure fraction. J Data Science, 12, 107-36.
- Ortega EM, Cancho VG, Lachos VH (2008). Assessing influence in survival data with a cure fraction and covariates.
- Othus M, Barlogie B, LeBlanc ML, et al (2012). Cure models as a useful statistical tool for analyzing survival. Clinical Cancer Research, 18, 3731-6. https://doi.org/10.1158/1078-0432.CCR-11-2859
- Rahimzadeh M, Baghestani AR, Gohari MR, et al (2014). Estimation of the cure rate in Iranian breast cancer patients. Asian Pac J Cancer Prev, 15, 4839-42. https://doi.org/10.7314/APJCP.2014.15.12.4839
- Rama R, Swaminathan R, Venkatesan P (2010). Cure models for estimating hospital-based breast cancer survival. Asian Pac J Cancer Prev, 11, 387-91.
- Rondeau V, Schaffner E, Corbière F, et al (2013). Cure frailty models for survival data: Application to recurrences for breast cancer and to hospital readmissions for colorectal cancer. Statistical Methods in Medical Research, 22, 243-60. https://doi.org/10.1177/0962280210395521
- Sadjadi A, Nouraie M, Mohagheghi Mohammad A, et al (2005). Cancer occurrence in Iran in 2002, an international perspective. Asian Pac J Cancer Prev, 6, 359.
- Schmidt P, Witte AD (1989). Predicting criminal recidivism using 'split population' survival time models. J Econometrics, 40, 141-59. https://doi.org/10.1016/0304-4076(89)90034-1
- Sposto R (2002). Cure model analysis in cancer: an application to data from the Children's Cancer Group. Statistics in Medicine, 21, 293-312. https://doi.org/10.1002/sim.987
- Taghavi A, Fazeli Z, Vahedi M, et al (2012). Increased trend of breast cancer mortality in Iran. Asian Pac J Cancer Prev, 13, 367-70. https://doi.org/10.7314/APJCP.2012.13.1.367
- Tournoud M, Ecochard R (2008). Promotion time models with time changing exposure and heterogeneity: application to infectious diseases. Biometrical Journal, 50, 395-407. https://doi.org/10.1002/bimj.200710405
- Tsodikov A, Ibrahim J, Yakovlev A (2003). Estimating cure rates from survival data: An alternative to two-component mixture models. J Am Statistical Association, 98.
- Yakovlev AY, Tsodikov AD, Asselain B 1996. Stochastic models of tumor latency and their biostatistical applications, OECD Publishing.
- Yu B (2008). A frailty mixture cure model with application to hospital readmission cata. Biometrical J, 50, 386-94. https://doi.org/10.1002/bimj.200710399
- Yu X, De Angelis R, Andersson TM, et al (2013). Estimating the proportion cured of cancer: some practical advice for users. Cancer Epidemiol, 37, 836-42. https://doi.org/10.1016/j.canep.2013.08.014
Cited by
- Survival Analysing of the Breast Cancer Patients Using Cure Model vol.19, pp.7, 2017, https://doi.org/10.5812/ircmj.55575