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Abstract—Recently, flash cache is widely adopted as 
the performance accelerator of legacy storage systems. 
Unlike other cache media, flash cache should be 
carefully managed as it has peculiar characteristics 
such as long write latency and limited P/E cycles. In 
particular, we make two prominent observations that 
can be utilized in managing flash cache. First, a 
serious worn-out problem happens when the 
working-set of a system is beyond the capacity of flash 
cache due to excessively frequent cache replacement. 
Second, more than 50% of data has no hit in flash 
cache as it is a second level cache. Based on these 
observations, we propose a cache admission control 
policy that does not cache data when it is first 
accessed, and inserts it into the cache only after its 
second access occurs within a certain time window. 
This allows the filtering of data disruptive to flash 
cache in terms of endurance and performance. With 
this policy, we prolong the lifetime of flash cache 2.3 
times without any performance degradations.    
 
Index Terms—Flash cache, admission control, 
replacement policy, flash memory, LRU   

I. INTRODUCTION 

For decades, the wide speed gap between main 
memory and secondary storage has been a primary 
source of performance degradations in computer systems. 

Due to the mechanical moving part of hard disks, the 
access time of secondary storage has been limited to tens 
of milliseconds, which is five or six orders of magnitude 
slower than DRAM access time. To relieve this problem, 
buffer caching mechanisms have been studied 
extensively in database [1-3] and operating systems [4-6]. 
A buffer caching system stores requested data in a certain 
part of DRAM memory called buffer cache, thereby 
servicing subsequent requests directly without accessing 
slow disk storage. However, as the size of storage data 
grows even faster than that of DRAM, the effectiveness 
of buffer caching is increasingly limited.  

Recently, flash cache is widely adopted as the 
performance accelerator of legacy storage systems. Due 
to the rapid improvements in micro-fabrication processes 
and MLC (multi-level cell) technologies, the cost per 
gigabyte of flash memory has been reduced by 50% 
every year, and its capacity seems to be growing just as 
fast [7]. This makes flash memory increasingly useful for 
the storage cache of enterprise-scale server systems.  

Flash cache serves as a second level cache, i.e., a 
request that has been missed from the buffer cache is sent 
to the flash cache. Unlike other cache media, flash cache 
should be carefully managed as it has peculiar 
characteristics such as long write latency and limited 
program/erase (P/E) cycles. In particular, the number of 
P/E cycles allowed for MLC flash memory is as small as 
104, which is 12-15 orders of magnitude less than that of 
DRAM. Thus, frequent cache replacement is not 
desirable in flash caches.  

We analyze various storage access traces, and make 
two prominent observations that can be exploited in 
managing flash cache. The first observation is that a 
serious worn-out problem of flash cache is encountered 
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when the working-set of a system becomes larger than 
the flash cache size. Specifically, with respect to the 
lifetime of flash memory, using multiple flash chips 
simultaneously as a large cache is more effective than 
adopting one small flash chip first and another one after 
the chip is worn out. This is because a small cache incurs 
excessively frequent replacement because hot data are 
replaced and inserted repeatedly due to the caching of 
non-reusable data if the cache size is not enough to hold 
data.  

Our second observation is that a large portion of data 
are never used after entering the flash cache, which 
would degrade the storage performance and reduce the 
lifetime of flash cache if we cache them. We observe that 
the ratio of non-accessed data during the cache residence 
is more than 50%. As flash cache is a second level cache, 
the locality of accesses is weaker than the buffer cache, 
which is the main reason of such situations.  

Based on the aforementioned observations, we present 
a new cache management scheme appropriately designed 
for flash cache. Specifically, we propose a cache 
admission control (AC) policy that detects data unlikely 
to be re-referenced soon and prevents them from being 
loaded into the flash cache.  

Before storing data into the flash cache, our policy 
estimates whether it will be accessed again. Specifically, 
we do not cache data when it is first accessed, and insert 

it into the flash cache only after its second access occurs 
within a certain time window. This allows the filtering of 
data disruptive to flash cache in terms of endurance and 
performance. With this policy, we prolong the lifetime of 
flash cache 2.3 times compared to original LRU, without 
any performance degradations. 

The remainder of this paper is organized as follows. 
Section II describes the motivation of this research. 
Section III describes a new cache management scheme 
for flash cache. In Section IV, we show the performance 
evaluation results to assess the effectiveness of the 
proposed scheme. Section V summarizes related works 
of this research. Finally, we conclude this paper in 
Section VI. 

II. MOTIVATIONS 

In this section, we first analyze various file access 
traces to investigate the access count distribution of 
cache data. Fig. 1 shows the ratio of cached data that are 
not accessed again before evicted from the cache, 
varying the cache size from 0.1 to 1.0 relative to the total 
access sizes. In reality, the cache size of 1.0 is identical 
to the infinite cache capacity where a complete data 
accesses in the trace can be cached at the same time. This 
is an unrealistic condition but we present it to show the 
complete trend of access count distributions as a function 
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Fig. 1. The ratio of non-accessed data during the cache residence 
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of the cache size. In practical aspects, the cache size 
smaller than 0.5 represents most of real system situations. 
As shown in Fig. 1, the ratio of data accessed only once 
(i.e., no access while in the cache) accounts for a large 
portion of cached data in all practical cases. Specifically, 
all workloads exhibit more than 40% of single-accessed 
data for practical cache sizes. This large portion of 
single-accessed data is not helpful to the performance 
improvement as they are not re-used at all before evicted 
from the cache. This happens as flash cache is a second 
level cache which receives requests only when a DRAM 
cache miss occurs. 

Another important observation is that the large portion 
of single-accessed data reduces the lifetime of flash 
cache significantly if the cache size is relatively small. In 
particular, when the working-set of a system is beyond 
the capacity of flash cache, it encounters a serious worn-
out problem caused by excessively frequent cache 
replacement. To quantify this effect, we investigate the 
lifetime of different flash cache configurations under the 
same cost. Specifically, we set the initial cache size to 
4GB and investigate the lifetime of this cache first. Then, 
we split another 4GB cache into two 2GB caches and use 
one 2GB first, and the other 2GB after the first one is 
worn out. Similarly, we measure the lifetime of 
subsequent cache configurations reducing the cache size 
in half. As shown in Fig. 2, the lifetime of using many 
small caches repeatedly is not longer than the lifetime of 
adopting a large cache once. This is because a small 
cache incurs much more frequent replacement.  

Our observations indicate that a cache admission 
control policy is necessary in order to detect data 
unlikely to be re-referenced and prevents them from 
being loaded into the flash cache. 

III. THE FLASH CACHE ADMISSION POLICY 

The principle of caching is to retrieve data from slow 
storage and maintain it in the cache even after servicing 
the current request assuming the data to be requested 
again in the near future. Usually, we can expect the 
performance gain by caching all requested data although 
we do not know whether the data will be subsequently 
requested or not. However, as mentioned in Section II, 
this is not the case for flash cache, which receives a large 
portion of single-accessed requests and allows limited 

P/E cycles.  
In this section, we present a new cache management 

scheme appropriately designed for flash cache. 
Specifically, we propose a cache admission control (AC) 
policy that estimates data unlikely to be re-referenced 
and bypasses those requests from the flash cache. In 
particular, we do not cache data when it is first accessed, 
and insert it into the flash cache only after its second 
access occurs within a certain time window. This allows 
the filtering of data disruptive to flash cache in terms of 
endurance and performance.  

To maintain the time window, we use a small amount 
of history buffer that does not store the contents of actual 
data, but maintains the information that the data were 
accessed recently. Note that this history buffer consists of 
BPRAM (byte-addressable persistent random access 
memory) such as PCM (phase change memory) or STT-
MRAM (spin torque transfer magnetic RAM) rather than 
flash cache itself. The optimal size of the history buffer 
varies depending not only on the workload characteristics 
but also on the actual flash cache size, and thus it can be 
a control parameter to be tuned. As a basic configuration, 
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Fig. 2. Flash cache lifetime under different configurations 
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we set the number of history buffer entries to the same 
number of flash cache blocks. This is reasonable because 
a bypassed data itself is not cached but its history 
information is maintained as if it is cached until it is 
evicted from the history buffer whose size is identical to 
the actual cache size. Note that maintaining this size of 
history buffer has very low overhead because it only 
contains a small size of metadata (less than 20 bytes for 
each data block) whereas an actual data block contains 
4KB of data [2]. 

Now, let us return to the description of the cache 
admission control policy. The motivation of this policy is 
already explained in the previous section where the 
access count distribution of cached data exhibits a large 
portion of single accesses. Thus, the second access 
within a short time duration is a good indicator of 
whether a data block will be effective or not in the near 
future. Therefore, bypassing flash cache on the first 
access is effective in discriminating non-profitable data.  

The benefit of our cache admission control policy can 
be observed in terms of two aspects. First, the write cost 
of storing non-profitable data blocks into the flash cache 
can be saved. In addition, our policy can protect 
expensive cache space from being polluted by non-
profitable data blocks when the cache capacity is 
relatively smaller than current working set. The saved 
cache space can be utilized for maintaining more 
profitable data blocks, which also has the effect of 
preventing the cache from thrashing. 

IV. PERFORMANCE EVALUATION 

In this section, we present the performance evaluation 
results to assess the effectiveness of the proposed cache 
admission control policy. We collected file access traces 
through the modified strace 4.6 utility. As the trace 
collection was conducted at the system call layer, the 
traces contain all file access requests including those of 
cache hits as well as actual storage accesses. Note also 
that the traces contain the physical time of each request, 
and thus we replay them at the exact time of each request. 
These experiments provide more fair comparison than 
direct execution of real workloads each time. This is 
because workloads cannot be executed with the same 
user interaction and/or system status (e.g. cache state) for 
each workload run, making fair comparison difficult. 

Fig. 3 shows the lifetime of flash cache for each 
workload as the cache configuration is varied. As shown 
in the figure, our cache admission control policy 
performs better than the conventional no-admission 
control policy for all cases. Specifically, the extended 
lifetime of flash cache is 230% on average. In this 
experiment, we use LRU (least recently used) as the 
cache replacement policy.  

Our cache admission control policy extends the 
lifetime of flash cache significantly for all cache 
configurations when the financial workload is used. The 
extended lifetime is in the range of 160-182%. This 
implies that the financial workload has a lot of single-
accessed data and the workload is relatively heavy to 
hold all requested data without the admission control 
policy.  

In contrast, when the websearch workload is used, the 
effectiveness of the admission control policy is contrasted 
as the cache configuration changes. In a small size cache, 
since the time duration that data reside in the cache is short, 
data are more likely to be evicted from the cache before 
accessed. In this situation, our admission control policy 
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performs well by filtering the large portion of non-
profitable data blocks. It can save substantial amount of 
additional cost required to store them into the flash cache. 
In addition, the admission control policy has an effect of 
increasing the effective cache space. This gain becomes 
large when the cache size is small. Note that the marginal 
performance gain per increased cache size is large when 
the workload suffers from a small cache capacity. On the 
other hand, as the cache size becomes large, the gap of the 
two policies becomes smaller and finally their results 
merge to a single point. The reason is that most requests 
can be accommodated to a large cache irrespective of 
cache management policies in this case. The extended 
lifetime by adopting the admission control policy in 
websearch workload is 5-98%. 

Now, let us compare the effectiveness of the admission 
control policy with respect to the I/O performances. As the 
proposed admission control policy does not cache data 
upon the first access, it incurs additional cache misses 
when the data is accessed again. Fig. 4 shows the total I/O 
time of the workloads as the admission control policy is 
adopted in comparison with those that do not use it. As 
shown in the figure, the results of the two policies are 
almost same and thus no performance degradation is 
observed even though we filter out a certain amount of 
requests. This is because single-accessing data are 
responsible for a large portion of such filtering target and 
admission control can also improve the performance due 
to the extension of effective cache space.  

V. RELATED WORK 

To alleviate the speed gap in computer systems, buffer 
caching algorithms have been studied extensively for 
decades. Section V-1 describes the goal of buffer caching 
for hard disks and summarizes algorithms for hard disks. 
As flash memory becomes increasingly popular, caching 
algorithms for flash memory storage are also being 
studied actively. Section V-2 summarizes the distinct 
characteristics of flash memory storage and the caching 
algorithms for flash memory.  

 
1. Buffer Caching Algorithms for Hard Disks 

 
Most operating systems, including Linux, have been 

optimized under the assumption that storage devices are 

an order of magnitude slower than main memory. Buffer 
caching algorithms therefore focus on maximizing the hit 
ratio by replacing the block least likely to be referenced 
again.  

The LRU (least recently used) algorithm does this by 
exploiting the recency of the last reference time. LRU 
evicts the block that has the furthest last reference time if 
free space is needed. This is based on the temporal 
locality of block references, which implies that a more 
recently referenced block is more likely to be referenced 
again in the near future. The LFU (least frequently used) 
algorithm uses the frequency of block references instead 
of recency to identify blocks likely to be referenced again. 
LFU maintains the reference count of each block in the 
cache, and evicts the least frequently referenced block if 
needed.  

There have been studies that aim to combine the 
advantages of LRU and LFU. O’Neil et al. present the 
LRU-k replacement algorithm to address the problem of 
LRU that cannot consider the reference frequency of 
blocks [3]. LRU-k decides blocks to be replaced based on 
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Fig. 4. Performance results under different configurations 
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the time of the kth-to-last reference. A larger k can 
discriminate better between frequently and infrequently 
referenced blocks. However, LRU-k ignores the recency 
of the k–1 references, and thus it does not work 
adaptively to changing workloads when k is large.  

Johnson and Shasha propose a block replacement 
policy called 2Q [2]. This algorithm divides the LRU 
cache list into two queues, namely A1 and Am, and places 
blocks initially in the A1 queue. If a block in the A1 queue 
is re-referenced, it is promoted to the Am queue. The 
replacement occurs in A1 according to LRU. In this 
algorithm, blocks referenced only once are quickly 
removed from the cache, while blocks that are repeatedly 
referenced can remain in the buffer cache for an extended 
period of time. 

Lee et al. propose LRFU (least recently/frequently 
used) algorithm that subsumes the LRU and LFU 
algorithms [5]. In LRFU, each cached block is associated 
with a CRF (combined recency and frequency) value that 
estimates the re-reference likelihood of the block in 
terms of both recency and frequency. All past references 
to a block during its residence in the cache are reflected 
in CRF and a reference’s contribution decreases as time 
progresses. 

ARC (adaptive replacement cache) is another 
algorithm that adaptively considers the recency and 
frequency of references [8]. ARC maintains two LRU 
lists for cache directory, T1 to capture recency and T2 to 
capture frequency, and adaptively adjusts their sizes 
according to the evolution of workloads. 

Some algorithms detect reference patterns and allocate 
separate cache space to each detected pattern. UBM 
(unified buffer management) is a representative 
algorithm in this class [4]. UBM classifies referenced 
blocks into three patterns, sequential, looping, and other 
references, and then allocates cache space to each 
patterns based on their marginal gain.  

LIRS (low inter-reference recency set replacement) 
uses the concept of inter reference recency to accurately 
estimate future block references [6]. LIRS divides blocks 
into two sets: HIR (high inter-reference recency) and LIR 
(low inter-reference recency) block sets. LIRS gives 
higher caching priorities to the LIR block set as it 
contains frequently accessed blocks. When there is a 
reference to an HIR block, it can be promoted to the LIR 
block set if its inter-reference recency is shorter than the 

recency of an LIR block. If free space is needed, LIRS 
evicts blocks in the HIR block set. 

DULO (dual locality) exploits both temporal locality 
and spatial locality in selecting victim blocks [9]. 
Because hard disks have relatively large seek time 
compared to transfer time, both a randomly accessed 
block and a certain number of sequentially accessed 
blocks have almost the same cost to read. DULO 
considers this by managing the LRU stack according to 
the recency and the size of block sequences. 

 
2. Caching Algorithms for Flash Memory 

 
Recently, as NAND flash memory is widely adopted 

as the secondary storage of mobile systems, there have 
been extensive studies on buffer caching algorithms for 
NAND flash memory. CFLRU (clean-first LRU) is a 
cache replacement algorithm for flash memory that 
considers the hit ratio as well as the physical 
characteristics of NAND flash memory, in which reading 
and writing have different I/O costs [10]. CFLRU can 
accommodate the different eviction costs of a clean block, 
which can simply be discarded, and a dirty block, which 
should be written back to flash memory. CFLRU 
maintains a certain cache area called window and delays 
the eviction of dirty blocks in the window as long as a 
clean block is available for eviction.  

LRU-WSR (LRU with write sequence reordering) is 
another replacement algorithm that favors dirty blocks 
[11]. Basically, LRU-WSR also manages blocks using 
the LRU list. Instead of setting the window area, LRU-
WSR gives one more chance to a dirty block when it 
reaches the LRU position in the list. In this way, LRU-
WSR considers asymmetric operation costs of reads and 
writes in the flash memory.  

FAB (flash-aware buffer management) is proposed as 
a buffer replacement algorithm in flash-based PMP 
systems [12]. PMP systems commonly have long 
sequential accesses for media data and some short 
accesses for metadata at the same time. One problem 
with this situation is that short write accesses cannot be 
buffered for a long time because they are pushed away 
by a large amount of sequential data. To cope with this 
problem, FAB manages buffered data from the same 
NAND flash memory block as a group, and replaces 
them together. Specifically, FAB replaces the group with 
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the largest number of buffers first, which is usually large 
sequential data.  

BPLRU (block padding least recently used) is a write 
buffer management algorithm to improve the random 
write performance of flash storage [13]. Similar to FAB, 
BPLRU groups buffers from the same NAND flash 
memory block, and replaces them together. When a 
buffer is accessed by a write operation, buffers in the 
same group are moved together to the MRU position of 
the list. BPLRU selects buffers in the LRU position as a 
victim, and flushes all data in the group. This block-level 
flushing reduces the random write cost of NAND flash 
memory. 

CLC (cold and largest cluster) is another write buffer 
replacement algorithm for NAND flash memory [14]. 
CLC uses BPRAM as its write buffer. Similar to FAB 
and BPLRU, CLC manages blocks from the same NAND 
flash memory blocks together. When replacement is 
needed, CLC selects a NAND block group with the 
largest number of blocks among groups that have not 
been referenced recently. 

VI. CONCLUSION 

Flash cache is widely adopted in modern high 
performance storage systems. In this paper, we made two 
prominent observations that can be utilized in managing 
flash cache efficiently. The first one is that a serious 
worn-out problem of flash cache happens when the 
working-set of a system is beyond the capacity of flash 
cache due to excessively frequent cache replacement. 
Secondly, we observed that more than 50% of data has 
no hit in flash cache as it is a second level cache. Based 
on these observations, we proposed a cache admission 
control policy that does not insert data into the flash 
cache when it is first accessed, and allows it to be cached 
only after its second access occurs within a certain time 
window. This allows the filtering of data disruptive to 
flash cache in terms of endurance and performance. With 
this policy, we showed that the lifetime of flash cache 
can be extended by 230% without any performance 
degradations. 
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