
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 ISSN(Print) 1598-1657
http://dx.doi.org/10.5573/JSTS.2015.15.5.546 ISSN(Online) 2233-4866

Manuscript received Apr. 22, 2015; accepted Jun. 8, 2015
A part of this work was presented in Korean Conference on
Semiconductors, Seoul in Korea, Feb. 2015.
Ewha Womans University
E-mail : bahn@ewha.ac.kr

Preventing Fast Wear-out of Flash Cache with An
Admission Control Policy

Eunji Lee and Hyokyung Bahn

Abstract—Recently, flash cache is widely adopted as
the performance accelerator of legacy storage systems.
Unlike other cache media, flash cache should be
carefully managed as it has peculiar characteristics
such as long write latency and limited P/E cycles. In
particular, we make two prominent observations that
can be utilized in managing flash cache. First, a
serious worn-out problem happens when the
working-set of a system is beyond the capacity of flash
cache due to excessively frequent cache replacement.
Second, more than 50% of data has no hit in flash
cache as it is a second level cache. Based on these
observations, we propose a cache admission control
policy that does not cache data when it is first
accessed, and inserts it into the cache only after its
second access occurs within a certain time window.
This allows the filtering of data disruptive to flash
cache in terms of endurance and performance. With
this policy, we prolong the lifetime of flash cache 2.3
times without any performance degradations.

Index Terms—Flash cache, admission control,
replacement policy, flash memory, LRU

I. INTRODUCTION

For decades, the wide speed gap between main
memory and secondary storage has been a primary
source of performance degradations in computer systems.

Due to the mechanical moving part of hard disks, the
access time of secondary storage has been limited to tens
of milliseconds, which is five or six orders of magnitude
slower than DRAM access time. To relieve this problem,
buffer caching mechanisms have been studied
extensively in database [1-3] and operating systems [4-6].
A buffer caching system stores requested data in a certain
part of DRAM memory called buffer cache, thereby
servicing subsequent requests directly without accessing
slow disk storage. However, as the size of storage data
grows even faster than that of DRAM, the effectiveness
of buffer caching is increasingly limited.

Recently, flash cache is widely adopted as the
performance accelerator of legacy storage systems. Due
to the rapid improvements in micro-fabrication processes
and MLC (multi-level cell) technologies, the cost per
gigabyte of flash memory has been reduced by 50%
every year, and its capacity seems to be growing just as
fast [7]. This makes flash memory increasingly useful for
the storage cache of enterprise-scale server systems.

Flash cache serves as a second level cache, i.e., a
request that has been missed from the buffer cache is sent
to the flash cache. Unlike other cache media, flash cache
should be carefully managed as it has peculiar
characteristics such as long write latency and limited
program/erase (P/E) cycles. In particular, the number of
P/E cycles allowed for MLC flash memory is as small as
104, which is 12-15 orders of magnitude less than that of
DRAM. Thus, frequent cache replacement is not
desirable in flash caches.

We analyze various storage access traces, and make
two prominent observations that can be exploited in
managing flash cache. The first observation is that a
serious worn-out problem of flash cache is encountered

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 547

when the working-set of a system becomes larger than
the flash cache size. Specifically, with respect to the
lifetime of flash memory, using multiple flash chips
simultaneously as a large cache is more effective than
adopting one small flash chip first and another one after
the chip is worn out. This is because a small cache incurs
excessively frequent replacement because hot data are
replaced and inserted repeatedly due to the caching of
non-reusable data if the cache size is not enough to hold
data.

Our second observation is that a large portion of data
are never used after entering the flash cache, which
would degrade the storage performance and reduce the
lifetime of flash cache if we cache them. We observe that
the ratio of non-accessed data during the cache residence
is more than 50%. As flash cache is a second level cache,
the locality of accesses is weaker than the buffer cache,
which is the main reason of such situations.

Based on the aforementioned observations, we present
a new cache management scheme appropriately designed
for flash cache. Specifically, we propose a cache
admission control (AC) policy that detects data unlikely
to be re-referenced soon and prevents them from being
loaded into the flash cache.

Before storing data into the flash cache, our policy
estimates whether it will be accessed again. Specifically,
we do not cache data when it is first accessed, and insert

it into the flash cache only after its second access occurs
within a certain time window. This allows the filtering of
data disruptive to flash cache in terms of endurance and
performance. With this policy, we prolong the lifetime of
flash cache 2.3 times compared to original LRU, without
any performance degradations.

The remainder of this paper is organized as follows.
Section II describes the motivation of this research.
Section III describes a new cache management scheme
for flash cache. In Section IV, we show the performance
evaluation results to assess the effectiveness of the
proposed scheme. Section V summarizes related works
of this research. Finally, we conclude this paper in
Section VI.

II. MOTIVATIONS

In this section, we first analyze various file access
traces to investigate the access count distribution of
cache data. Fig. 1 shows the ratio of cached data that are
not accessed again before evicted from the cache,
varying the cache size from 0.1 to 1.0 relative to the total
access sizes. In reality, the cache size of 1.0 is identical
to the infinite cache capacity where a complete data
accesses in the trace can be cached at the same time. This
is an unrealistic condition but we present it to show the
complete trend of access count distributions as a function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f z
er

o
hi

t b
lo

ck
s

in
 c

ac
he

cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f z
er

o
hi

t b
lo

ck
s

in
 c

ac
he

cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f u
nu

se
d

bl
oc

ks
 in

 c
ac

he

cache size

 (a) financial (b) websearch (c) desktop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f u
nu

se
d

bl
oc

ks
 in

 c
ac

he

cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f u
nu

se
d

bl
oc

ks
 in

 c
ac

he

cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f u
nu

se
d

bl
oc

ks
 in

 c
ac

he

cache size

 (d) proxy (e) varmail (f) web server

Fig. 1. The ratio of non-accessed data during the cache residence

548 EUNJI LEE et al : PREVENTING FAST WEAR-OUT OF FLASH CACHE WITH AN ADMISSION CONTROL POLICY

of the cache size. In practical aspects, the cache size
smaller than 0.5 represents most of real system situations.
As shown in Fig. 1, the ratio of data accessed only once
(i.e., no access while in the cache) accounts for a large
portion of cached data in all practical cases. Specifically,
all workloads exhibit more than 40% of single-accessed
data for practical cache sizes. This large portion of
single-accessed data is not helpful to the performance
improvement as they are not re-used at all before evicted
from the cache. This happens as flash cache is a second
level cache which receives requests only when a DRAM
cache miss occurs.

Another important observation is that the large portion
of single-accessed data reduces the lifetime of flash
cache significantly if the cache size is relatively small. In
particular, when the working-set of a system is beyond
the capacity of flash cache, it encounters a serious worn-
out problem caused by excessively frequent cache
replacement. To quantify this effect, we investigate the
lifetime of different flash cache configurations under the
same cost. Specifically, we set the initial cache size to
4GB and investigate the lifetime of this cache first. Then,
we split another 4GB cache into two 2GB caches and use
one 2GB first, and the other 2GB after the first one is
worn out. Similarly, we measure the lifetime of
subsequent cache configurations reducing the cache size
in half. As shown in Fig. 2, the lifetime of using many
small caches repeatedly is not longer than the lifetime of
adopting a large cache once. This is because a small
cache incurs much more frequent replacement.

Our observations indicate that a cache admission
control policy is necessary in order to detect data
unlikely to be re-referenced and prevents them from
being loaded into the flash cache.

III. THE FLASH CACHE ADMISSION POLICY

The principle of caching is to retrieve data from slow
storage and maintain it in the cache even after servicing
the current request assuming the data to be requested
again in the near future. Usually, we can expect the
performance gain by caching all requested data although
we do not know whether the data will be subsequently
requested or not. However, as mentioned in Section II,
this is not the case for flash cache, which receives a large
portion of single-accessed requests and allows limited

P/E cycles.
In this section, we present a new cache management

scheme appropriately designed for flash cache.
Specifically, we propose a cache admission control (AC)
policy that estimates data unlikely to be re-referenced
and bypasses those requests from the flash cache. In
particular, we do not cache data when it is first accessed,
and insert it into the flash cache only after its second
access occurs within a certain time window. This allows
the filtering of data disruptive to flash cache in terms of
endurance and performance.

To maintain the time window, we use a small amount
of history buffer that does not store the contents of actual
data, but maintains the information that the data were
accessed recently. Note that this history buffer consists of
BPRAM (byte-addressable persistent random access
memory) such as PCM (phase change memory) or STT-
MRAM (spin torque transfer magnetic RAM) rather than
flash cache itself. The optimal size of the history buffer
varies depending not only on the workload characteristics
but also on the actual flash cache size, and thus it can be
a control parameter to be tuned. As a basic configuration,

0

5

10

15

20

25

30

Li
fe

tim
e

(y
ea

r)

Flash cache configurations

(a) Financial workload

0

5

10

15

20

25

30

35

40

45

Li
fe

tim
e

(y
ea

r)

Flash cache size
(b) Websearch workload

Fig. 2. Flash cache lifetime under different configurations

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 549

we set the number of history buffer entries to the same
number of flash cache blocks. This is reasonable because
a bypassed data itself is not cached but its history
information is maintained as if it is cached until it is
evicted from the history buffer whose size is identical to
the actual cache size. Note that maintaining this size of
history buffer has very low overhead because it only
contains a small size of metadata (less than 20 bytes for
each data block) whereas an actual data block contains
4KB of data [2].

Now, let us return to the description of the cache
admission control policy. The motivation of this policy is
already explained in the previous section where the
access count distribution of cached data exhibits a large
portion of single accesses. Thus, the second access
within a short time duration is a good indicator of
whether a data block will be effective or not in the near
future. Therefore, bypassing flash cache on the first
access is effective in discriminating non-profitable data.

The benefit of our cache admission control policy can
be observed in terms of two aspects. First, the write cost
of storing non-profitable data blocks into the flash cache
can be saved. In addition, our policy can protect
expensive cache space from being polluted by non-
profitable data blocks when the cache capacity is
relatively smaller than current working set. The saved
cache space can be utilized for maintaining more
profitable data blocks, which also has the effect of
preventing the cache from thrashing.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation
results to assess the effectiveness of the proposed cache
admission control policy. We collected file access traces
through the modified strace 4.6 utility. As the trace
collection was conducted at the system call layer, the
traces contain all file access requests including those of
cache hits as well as actual storage accesses. Note also
that the traces contain the physical time of each request,
and thus we replay them at the exact time of each request.
These experiments provide more fair comparison than
direct execution of real workloads each time. This is
because workloads cannot be executed with the same
user interaction and/or system status (e.g. cache state) for
each workload run, making fair comparison difficult.

Fig. 3 shows the lifetime of flash cache for each
workload as the cache configuration is varied. As shown
in the figure, our cache admission control policy
performs better than the conventional no-admission
control policy for all cases. Specifically, the extended
lifetime of flash cache is 230% on average. In this
experiment, we use LRU (least recently used) as the
cache replacement policy.

Our cache admission control policy extends the
lifetime of flash cache significantly for all cache
configurations when the financial workload is used. The
extended lifetime is in the range of 160-182%. This
implies that the financial workload has a lot of single-
accessed data and the workload is relatively heavy to
hold all requested data without the admission control
policy.

In contrast, when the websearch workload is used, the
effectiveness of the admission control policy is contrasted
as the cache configuration changes. In a small size cache,
since the time duration that data reside in the cache is short,
data are more likely to be evicted from the cache before
accessed. In this situation, our admission control policy

0

10

20

30

40

50

60

70

Li
fe

tim
e

(y
ea

r)

Flash cache configurations

LRU + no AC
LRU + AC

(a) Financial workload

0

5

10

15

20

25

30

35

40

45

Li
fe

tim
e

(y
ea

r)

Flash cache configurations

LRU + no AC
LRU + AC

(b) Websearch workload

Fig. 3. Flash cache lifetime under different configurations

550 EUNJI LEE et al : PREVENTING FAST WEAR-OUT OF FLASH CACHE WITH AN ADMISSION CONTROL POLICY

performs well by filtering the large portion of non-
profitable data blocks. It can save substantial amount of
additional cost required to store them into the flash cache.
In addition, the admission control policy has an effect of
increasing the effective cache space. This gain becomes
large when the cache size is small. Note that the marginal
performance gain per increased cache size is large when
the workload suffers from a small cache capacity. On the
other hand, as the cache size becomes large, the gap of the
two policies becomes smaller and finally their results
merge to a single point. The reason is that most requests
can be accommodated to a large cache irrespective of
cache management policies in this case. The extended
lifetime by adopting the admission control policy in
websearch workload is 5-98%.

Now, let us compare the effectiveness of the admission
control policy with respect to the I/O performances. As the
proposed admission control policy does not cache data
upon the first access, it incurs additional cache misses
when the data is accessed again. Fig. 4 shows the total I/O
time of the workloads as the admission control policy is
adopted in comparison with those that do not use it. As
shown in the figure, the results of the two policies are
almost same and thus no performance degradation is
observed even though we filter out a certain amount of
requests. This is because single-accessing data are
responsible for a large portion of such filtering target and
admission control can also improve the performance due
to the extension of effective cache space.

V. RELATED WORK

To alleviate the speed gap in computer systems, buffer
caching algorithms have been studied extensively for
decades. Section V-1 describes the goal of buffer caching
for hard disks and summarizes algorithms for hard disks.
As flash memory becomes increasingly popular, caching
algorithms for flash memory storage are also being
studied actively. Section V-2 summarizes the distinct
characteristics of flash memory storage and the caching
algorithms for flash memory.

1. Buffer Caching Algorithms for Hard Disks

Most operating systems, including Linux, have been

optimized under the assumption that storage devices are

an order of magnitude slower than main memory. Buffer
caching algorithms therefore focus on maximizing the hit
ratio by replacing the block least likely to be referenced
again.

The LRU (least recently used) algorithm does this by
exploiting the recency of the last reference time. LRU
evicts the block that has the furthest last reference time if
free space is needed. This is based on the temporal
locality of block references, which implies that a more
recently referenced block is more likely to be referenced
again in the near future. The LFU (least frequently used)
algorithm uses the frequency of block references instead
of recency to identify blocks likely to be referenced again.
LFU maintains the reference count of each block in the
cache, and evicts the least frequently referenced block if
needed.

There have been studies that aim to combine the
advantages of LRU and LFU. O’Neil et al. present the
LRU-k replacement algorithm to address the problem of
LRU that cannot consider the reference frequency of
blocks [3]. LRU-k decides blocks to be replaced based on

0

0.2

0.4

0.6

0.8

1

1.2

128 256 512 1024 2048 4096

To
ta

l I
/O

 ti
m

e
(n

or
m

)

Flash cache size (MB)

LRU

AC-LRU

(a) Financial workload

0

0.2

0.4

0.6

0.8

1

1.2

128 256 512 1024 2048 4096

To
ta

l I
/O

 ti
m

e
(n

or
m

)

Flash cache size (MB)

LRU

AC-LRU

(b) Websearch workload

Fig. 4. Performance results under different configurations

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 551

the time of the kth-to-last reference. A larger k can
discriminate better between frequently and infrequently
referenced blocks. However, LRU-k ignores the recency
of the k–1 references, and thus it does not work
adaptively to changing workloads when k is large.

Johnson and Shasha propose a block replacement
policy called 2Q [2]. This algorithm divides the LRU
cache list into two queues, namely A1 and Am, and places
blocks initially in the A1 queue. If a block in the A1 queue
is re-referenced, it is promoted to the Am queue. The
replacement occurs in A1 according to LRU. In this
algorithm, blocks referenced only once are quickly
removed from the cache, while blocks that are repeatedly
referenced can remain in the buffer cache for an extended
period of time.

Lee et al. propose LRFU (least recently/frequently
used) algorithm that subsumes the LRU and LFU
algorithms [5]. In LRFU, each cached block is associated
with a CRF (combined recency and frequency) value that
estimates the re-reference likelihood of the block in
terms of both recency and frequency. All past references
to a block during its residence in the cache are reflected
in CRF and a reference’s contribution decreases as time
progresses.

ARC (adaptive replacement cache) is another
algorithm that adaptively considers the recency and
frequency of references [8]. ARC maintains two LRU
lists for cache directory, T1 to capture recency and T2 to
capture frequency, and adaptively adjusts their sizes
according to the evolution of workloads.

Some algorithms detect reference patterns and allocate
separate cache space to each detected pattern. UBM
(unified buffer management) is a representative
algorithm in this class [4]. UBM classifies referenced
blocks into three patterns, sequential, looping, and other
references, and then allocates cache space to each
patterns based on their marginal gain.

LIRS (low inter-reference recency set replacement)
uses the concept of inter reference recency to accurately
estimate future block references [6]. LIRS divides blocks
into two sets: HIR (high inter-reference recency) and LIR
(low inter-reference recency) block sets. LIRS gives
higher caching priorities to the LIR block set as it
contains frequently accessed blocks. When there is a
reference to an HIR block, it can be promoted to the LIR
block set if its inter-reference recency is shorter than the

recency of an LIR block. If free space is needed, LIRS
evicts blocks in the HIR block set.

DULO (dual locality) exploits both temporal locality
and spatial locality in selecting victim blocks [9].
Because hard disks have relatively large seek time
compared to transfer time, both a randomly accessed
block and a certain number of sequentially accessed
blocks have almost the same cost to read. DULO
considers this by managing the LRU stack according to
the recency and the size of block sequences.

2. Caching Algorithms for Flash Memory

Recently, as NAND flash memory is widely adopted

as the secondary storage of mobile systems, there have
been extensive studies on buffer caching algorithms for
NAND flash memory. CFLRU (clean-first LRU) is a
cache replacement algorithm for flash memory that
considers the hit ratio as well as the physical
characteristics of NAND flash memory, in which reading
and writing have different I/O costs [10]. CFLRU can
accommodate the different eviction costs of a clean block,
which can simply be discarded, and a dirty block, which
should be written back to flash memory. CFLRU
maintains a certain cache area called window and delays
the eviction of dirty blocks in the window as long as a
clean block is available for eviction.

LRU-WSR (LRU with write sequence reordering) is
another replacement algorithm that favors dirty blocks
[11]. Basically, LRU-WSR also manages blocks using
the LRU list. Instead of setting the window area, LRU-
WSR gives one more chance to a dirty block when it
reaches the LRU position in the list. In this way, LRU-
WSR considers asymmetric operation costs of reads and
writes in the flash memory.

FAB (flash-aware buffer management) is proposed as
a buffer replacement algorithm in flash-based PMP
systems [12]. PMP systems commonly have long
sequential accesses for media data and some short
accesses for metadata at the same time. One problem
with this situation is that short write accesses cannot be
buffered for a long time because they are pushed away
by a large amount of sequential data. To cope with this
problem, FAB manages buffered data from the same
NAND flash memory block as a group, and replaces
them together. Specifically, FAB replaces the group with

552 EUNJI LEE et al : PREVENTING FAST WEAR-OUT OF FLASH CACHE WITH AN ADMISSION CONTROL POLICY

the largest number of buffers first, which is usually large
sequential data.

BPLRU (block padding least recently used) is a write
buffer management algorithm to improve the random
write performance of flash storage [13]. Similar to FAB,
BPLRU groups buffers from the same NAND flash
memory block, and replaces them together. When a
buffer is accessed by a write operation, buffers in the
same group are moved together to the MRU position of
the list. BPLRU selects buffers in the LRU position as a
victim, and flushes all data in the group. This block-level
flushing reduces the random write cost of NAND flash
memory.

CLC (cold and largest cluster) is another write buffer
replacement algorithm for NAND flash memory [14].
CLC uses BPRAM as its write buffer. Similar to FAB
and BPLRU, CLC manages blocks from the same NAND
flash memory blocks together. When replacement is
needed, CLC selects a NAND block group with the
largest number of blocks among groups that have not
been referenced recently.

VI. CONCLUSION

Flash cache is widely adopted in modern high
performance storage systems. In this paper, we made two
prominent observations that can be utilized in managing
flash cache efficiently. The first one is that a serious
worn-out problem of flash cache happens when the
working-set of a system is beyond the capacity of flash
cache due to excessively frequent cache replacement.
Secondly, we observed that more than 50% of data has
no hit in flash cache as it is a second level cache. Based
on these observations, we proposed a cache admission
control policy that does not insert data into the flash
cache when it is first accessed, and allows it to be cached
only after its second access occurs within a certain time
window. This allows the filtering of data disruptive to
flash cache in terms of endurance and performance. With
this policy, we showed that the lifetime of flash cache
can be extended by 230% without any performance
degradations.

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation (NRF) grant funded by the Korea
government (MEST) (No. 2011-0028825) and the
Ministry of Science, ICT & Future Planning (No. NRF-
2014R1A1A3053505).

REFERENCES

[1] Faloutsos, C., Ng, R., & Sellis, T., Flexible and
adaptable buffer management techniques for
database management systems, IEEE Transactions
on Computers, vol. 44, no. 4, pp. 546–560, 1995.

[2] Johnson, T. & Shasha, D. 2Q: a low overhead high
performance buffer management replacement
algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB), pp.
439–450, 1994.

[3] O’Neil, E.J., O’Neil, P.E., & Weikum, G. The
LRU-K page replacement algorithm for database
disk buffering. In Proceedings of ACM SIGMOD
International Conference on Management of Data,
pp. 297–306, 1993,.

[4] Kim, J.M., Choi, J., Kim, J., Noh, S.H., Min, S.L.,
Cho, Y., & Kim, C.S. A low-overhead, high-
performance unified buffer management scheme
that exploits sequential and looping references, In
Proceedings of USENIX Symposium on Operating
System Design and Implementation (OSDI), pp.
119–134, 2000.

[5] Lee, D., Choi, J., Kim, J.H., Noh, S.H., Min, S.L.,
Cho, Y., & Kim, C.S. LRFU: a spectrum of
policies that subsumes the least recently used and
least frequently used policies. IEEE Transactions
on Computers, vol. 50, no. 12, pp. 1352–1361,
2001.

[6] Jiang, S. & Zhang, X. Making LRU friendly to
weak locality workloads: a novel replacement
algorithm to improve buffer cache performance.
IEEE Transactions on Computers, vol. 5, no. 8, pp.
939–952, 2005.

[7] Leventhal, A. Flash Storage Memory.
Communications of the ACM, vol. 51, no. 7, pp.
47–51, 2008.

[8] Megiddo, N. & ModhaHA, D.S. ARC: a self-tuning,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 553

low overhead replacement cache. In Proceedings of
the 2nd USENIX Conference on File and Storage
Technologies, pp. 115–130, 2003.

[9] Jiang, S. & Zhang, X. Making LRU friendly to
weak locality workloads: a novel replacement
algorithm to improve buffer cache performance.
IEEE Transactions on Computers, vol. 5, no. 8, pp.
939–952, 2005.

[10] Park, S., Jung, D., Kang, J., Kim, J., & Lee, J.
CFLRU: replacement algorithm for flash memory.
In Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for
embedded systems (CASES), pp. 234–241, 2006.

[11] Jung, H., Shim, H., Park, S., Kang, S., & Cha, J.
LRU-WSR: integration of LRU and writes
sequence reordering for flash memory. IEEE Trans.
Consumer Electron., vol. 54, no. 3, pp. 1215–1223,
2008.

[12] Jo, H., Kang, J., Park, S., Kim, J., & Lee, J. FAB:
flash-aware buffer management policy for portable
media players. IEEE Trans. Consumer Electron.,
vol. 52, no. 2, pp. 485–493, 2006.

[13] Kim, H. & Ahn, S. BPLRU: a buffer management
scheme for improving random writes in flash
storage. In Proceedings of the 6th USENIX
Conference File and Storage Technologies (FAST),
2008.

[14] Kang, S., Park, S., Jung, H., Shim, H., & Cha, J.
Performance trade-offs in using NVRAM write
buffer for flash memory-based storage devices.
IEEE Trans. Consumer Electron., vol. 58, no. 6, pp.
744–758, 2009.

Eunji Lee received the PhD degree
in computer engineering from Seoul
National University in 2012. She was
a visiting scholar at the Department
of EECS, the University of Michigan,
Ann Arbor, and a senior engineer at
the Samsung Electronics, Co., Ltd.

She is currently an assistant professor in the software
department, Chungbuk National University, Korea. Her
research interests include operating systems, embedded
systems, and storage systems. She has published more
than 40 papers in leading conferences and journals in
these fields, including IEEE Trans. Computers, IEEE
Trans. Knowledge & Data Engineering, and ACM Trans.
Storage. She also received the Best Paper Awards at
USENIX FAST in 2013.

Hyokyung Bahn received the BS,
MS, and PhD degrees in computer
science from Seoul National Univer-
sity, in 1997, 1999, and 2002,
respectively. He is currently a full
professor of computer engineering at
Ewha University, Korea. His

research interests include operating systems, storage
systems, embedded systems, and real-time systems. He
received the Best Paper Awards at the USENIX
Conference on File and Storage Technologies in 2013.

