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Abstract—As the cost-per-byte of SSDs dramatically 
decreases, the introduction of SSDs to Hadoop 
becomes an attractive choice for high performance 
data processing. In this paper the cost-per-
performance of SSD-based Hadoop cluster (SSD-
Hadoop) and HDD-based Hadoop cluster (HDD-
Hadoop) are evaluated. For this, we propose a 
MapReduce performance model using queuing 
network to simulate the execution time of MapReduce 
job with varying cluster size. To achieve an accurate 
model, the execution time distribution of MapReduce 
job is carefully profiled. The developed model can 
precisely predict the execution time of MapReduce 
jobs with less than 7% difference for most cases. It is 
also found that SSD-Hadoop is 20% more cost 
efficient than HDD-Hadoop because SSD-Hadoop 
needs a smaller number of nodes than HDD-Hadoop 
to achieve a comparable performance, according to 
the results of simulation with varying the number of 
cluster nodes.    
 
Index Terms—MapReduce, Hadoop, performance 
modeling, SSDs, cost-per-performance    

I. INTRODUCTION 

MapReduce [1] is a programing model which was 
suggested for large data parallel processing by Google. 
Apache Hadoop [3, 4] is an open source implementation 
of  MapReduce and Google File System (GFS) [2]. 

Recently, Hadoop was become a de facto standard in the 
area of BigData analytics. 

As the cost-per-byte of SSDs dramatically decreases 
and high performance data processing is increasingly 
important, the introduction of SSDs to Hadoop becomes 
an attractive choice [5, 6]. SSDs have much higher I/O 
performance than HDDs. As a result, SSDs can improve 
the performance of Hadoop cluster by removing the I/O 
bottleneck caused by low I/O performance of HDDs. 
However, the cost-per-byte of SSDs is still higher than 
that of HDDs. 

The previous researches compared the cost-per-
performance of SSDs with that of HDDs to highlight the 
high I/O performance of SSDs. Moon et al [5] evaluated 
different storage configurations using Hadoop benchmark. 
The results indicated that SSDs are suitable for Hadoop 
as intermediate data storage to increase the cost 
efficiency. Kambalta et al [6] compared the cost-per-
performance of SSDs and HDDs under equal-bandwidth 
constraints. However, they concerned only the cost 
efficiency of Hadoop clusters having same number of 
nodes, regardless of the performance of data processing. 

The performance of Hadoop cluster can be improved 
not only by using SSDs in place of HDDs but also by 
increasing the number of nodes. Therefore, it is needed to 
compare the cost efficiency of SSD-based Hadoop 
cluster (SSD-Hadoop) and HDD-based Hadoop cluster 
(HDD-Hadoop), displaying equal throughput, regardless 
of the number of nodes in the cluster. In this paper we 
propose a novel MapReduce performance model using 
queuing network to predict the execution time of 
MapReduce jobs. The simulation and experiment results 
reveal that the proposed performance model can predict 
the execution time of MapReduce jobs with less than 
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about 7% difference for most cases. Using the 
performance model, the execution time of MapReduce 
jobs with varying number of cluster nodes is also 
investigated. It reveals that HDD-Hadoop needs 1.4 
times more Data nodes than SSD-Hadoop to achieve the 
same performance. 

The remainder of this paper is organized as follows. 
Section II introduces the related works. Section III 
describes MapReduce workloads, and Section IV 
proposes the MapReduce queuing network model. 
Section V validates the proposed model and compares 
the cost efficiency of HDD-Hadoop and SSD-Hadoop 
cluster. The conclusion is given in Section VI. 

II. RELATED WORK 

There exist numerous studies evaluating the 
performance implication of SSDs in MapReduce 
workloads. Moon et al [5] compared the cost efficiency 
of various storage configurations using TeraSort, a 
representative Hadoop benchmark. Their study reveals 
that using SSDs as intermediate data storage of Hadoop 
is the most cost efficient solution because intermediate 
data of Hadoop are accessed mainly by random I/O 
request. Using SSDs for storing the intermediate data of 
Hadoop increases the cost efficiency by 15%, in 
comparison to HDD-only Hadoop cluster. Kambalta et al 
[6] compared the cost-per-performance of HDDs and 
SSDs, both of which have a same aggregated bandwidth, 
not capacity. According to their results of experiment, 
SSD-Hadoop is 2.5 times more expensive in terms of 
cost-per-performance, while achieving up to 70% higher 
performance compared to HDD-Hadoop.  The previous 
studies compared the cost-per-performance of HDD-
Hadoop and SSD-Hadoop under the constraint of 
equivalent cluster size. However, to get more practical 
insight, the cost efficiency should be estimated with the 
Hadoop clusters displaying the same bandwidth of data 
processing, which it reveals the cost efficient way for 
building Hadoop cluster allowing the required 
performance. We investigate this problem using the 
performance model of MapReduce. 

Building an effective performance model of 
MapReduce is difficult because MapReduce jobs are 
processed in the distributed and parallel fashion. There 
are previous studies proposing the performance models 

and performance optimization method for MapReduce. 
Yang suggested optimal number of Map tasks and 
Reduce tasks using their own performance model in [7]. 
Here it can be applicable only to restricted input size. 
Krevat et al [11] proposed an analytical performance model 
of MapReduce job displaying optimal performance of 
Hadoop cluster. The model does not predict the 
execution time of MapReduce jobs. 

III. MAPREDUCE OPERATION 

1. Overview of MapReduce 
 
Fig. 1 briefly describes the dataflow of MapReduce 

jobs. The MapReduce jobs are processed in two phases: 
Map and Reduce. Each phase is divided into multiple 
tasks, which are performed in parallel among multiple 
nodes. 

First, Map phase is divided into multiple Map tasks, 
each of which is in charge of a part of input data, called 
‘Input split’. They are all identical sizes. As the size of 
input data increases, the number of Map tasks also 
linearly increases because the size of Input split is fixed 
and the number of Input splits is same as the number of 
Map tasks. Each Map task performs user-defined Map 
function for its own Input split, and then writes the 
results at local disk. Note that the output of Map tasks is 
called ‘Intermediate data’, which is transferred to 
Reduce tasks.  

Reduce phase starts only after all Map tasks are 
complete. Like the Map phase, Reduce phase is divided 
into multiple Reduce tasks. At first, Reduce tasks copy 
the required Intermediate data from remote nodes. 
Following the operation called shuffling, the collected 
chunks of Intermediate data are merged. Note that 
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Fig. 1. The dataflow of MapReduce 
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shuffled and merged Intermediate data are input to the 
user-defined Reduce function. Finally, the output of 
Reduce function is written to the HDFS. In this paper, we 
propose to split a Reduce task into two sub-tasks: Shuffle 
sub-task and Reduce sub-task because they have different 
type of workloads. A Shuffle sub-task generates massive 
network traffic for copying Intermediate data from 
remote nodes. On the other hand, Reduce sub-task 
performs user-defined Reduce function and writes final 
output to the HDFS. Therefore, I/O resource is the 
mainly consumed resource. Because it is difficult to 
analyze a system performing various operations as a 
single unit, Reduce task is split into two sub-tasks for 
more precise and tractable modeling. 

 
2. Execution Time of MapReduce Job 

 
In this paper, execution time of MapReduce jobs is 

employed as the performance metric of Hadoop. It is 
affected by various system parameters and workload 
parameters are listed in Table 1. The system parameters 
define the configuration of Hadoop cluster, while the 
workload parameters do the characteristic of MapReduce 
jobs. Here execution time of MapReduce jobs is analyzed. 

First of all, Map phase consists of multiple iterations 
of Map tasks, while each iteration includes the same 
number of Map tasks, equivalent to the number of Map 
slots. Therefore, execution time of Map phase (TMP) is as 

follows. 
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Execution time of a Map task is comprised of reading 

Input split, processing Map function, and writing the 
Map output. Supposing linear function for Map function, 
execution time of Map tasks (Tm) is determined by the 
size of Input split (ISplit). Note that the size of Input split 
is determined according to the size of block of HDFS. 
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As mentioned above, Reduce phase is divided into 

Shuffle sub-task and Reduce sub-task, which are 
executed sequentially. Recall that the number of Reduce 
task need to be equal to the number of Reduce slot for 
optimized performance [7]. In other words, all Reduce 
tasks are processed simultaneously. Therefore, execution 
time of Reduce phase (TRP) is the longest execution time 
of Reduce tasks as follows. 

 
 ( )RP s rT Max T T= + .   

  
A Shuffle sub-task copies the required parts of 

Intermediate data from Map tasks to Reduce tasks. 
Hence execution time of Shuffle sub-task (Ts) is 
proportional to the size of Input data (ITotal). 

 

 Total m
s

r n

I R
T

N B
´

=
´

.   

  
A Reduce sub-task processes the Reduce function, and 

then writes the final output to the HDFS. Supposing 
linear Reduce function, execution time of Reduce sub-
task (Tr) increases linearly in proportion to the size of 
Input data (ITotal).  

 

 Total m Total m r
r

r r w

I R I R R
T g

N N B
æ ö´ ´ ´

= +ç ÷
´è ø

.   

  
Since the Shuffle and Reduce sub-task are proportional 

to the size of Input data (ITotal), linear regression 
technique can be used to find the average service demand 

Table 1. Parameters of MapReduce framework 

Category Symbol Definition 
Sm  The number of Map slots 
Sr  The number of Reduce slots 
N  The number of cluster nodes 

Br,Bw  The read/write bandwidth of storage 
Bn  The network bandwidth 

System 
parameters 

HB  The size of HDFS block 
ITotal  The size of total input data 
ISplit  The size of Input split (= HB) 

Nm  The number of Map tasks (= Total

Split

I
I

) 

Nr  The number of Reduce tasks 
f( )  The Map function 
g( )  The Reduce function 

Rm The ratio between input and output of 
Map function  

Workload 
parameters 

Rr 
The ratio between input and output of 
Reduce function 
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of each sub-task.  

IV. MODELING OF MAPREDUCE 

In this section a new performance model for 
MapReduce is proposed which can predict the execution 
time of MapReduce job using queuing network. A 
queuing network model is useful for system modeling 
because of its simplicity and flexibility. In addition, the 
well formulated queuing network theory can be adopted 
to analyze the target system. 

 
1. Modeling Strategy 

 
Fig. 2 shows the queuing network describing the 

MapReduce operation. Observe from the figure that the 
MapReduce operation is handled in two phases, Map and 
Reduce, while the Reduce phase consists of Shuffle stage 
and Reduce stage.  

 
A. Map tasks 
In the MapReduce framework, the maximum number 

of Map tasks processed simultaneously is limited by the 
number of Map slots. Each Map task is assigned to 
available Map slot. However, if there is no available Map 
slot, Map tasks should be delayed until Map slot 
becomes available. Therefore, each Map slot can be 
represented as a queuing station (Map station) in Fig. 2.  

 
B. Fork-Join stations 
The Fork-Join station of queuing network is used to 

describe the parallel processing of MapReduce job. In the 
Fork station (FM), MapReduce job is divided into 
multiple Map tasks which are distributed to multiple Map 

stations. The MapReduce job is queued in the Join 
station (JM) until all Map tasks are completed. Note that 
the Fork-Join mechanism is very suitable to model the 
parallelism of MapReduce operation. Likewise, Reduce 
phase is also described with Fork-Join stations (FR - JR) 

 
C. Shuffle and Reduce sub-tasks 
When all Map tasks are finished, the Reduce phase 

begins. Similar to Map phase, Reduce tasks are 
distributed to multiple Reduce slots in Fork station (FR) 
and merged in Join station (JR). Recall that a Reduce task 
is partitioned into two sub-tasks, Shuffle sub-task and 
Reduce sub-task, which are performed sequentially. 
Therefore, each Reduce slot is described as two type of 
queuing stations; Shuffle station and Reduce station 
which take charge of Shuffle sub-task and Reduce sub-
task, respectively. Then, the Shuffle station and Reduce 
station are grouped into a Finite Capacity Region in Fig. 
2. In the Finite Capacity Region, the aggregated number 
of shuffle sub-tasks and Reduce sub-tasks is bound by 
the number of Reduce slots.  

As described above, the MapReduce operation can be 
effectively represented with queuing network. In the next 
section, the results of an experiment are introduced to 
determine the distribution of service time of each 
queuing station. 

 

2. Experiment Setup 
 
To profile the execution time of each task, a Hadoop 

cluster consisting of one Name node and eight Data 
nodes is built. Here all cluster nodes are identically 
configured as summarized in Table 2. For the 
convenience of installation and management, CDH 4.7.1 
(Cloudera Distributed Hadoop) [8] is employed. For 
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Fig. 2. The queuing network model of MapReduce 
 

Table 2. The hardware and software configuration of a cluster 
node. 

Component Description 
Processor Intel Xeon E5-2670 (8 cores) 2.6 GHz * 2 
Memory 1600MHz DDR3 16GB * 16 = 256 GB 

HDD WD VelociRaptor 600 GB  
(SATA3/10 Krpm/32M) 

SSD Samsung SSD840 512 GB (SATA3) 
Network 10 Gigabit Ethernet NIC 

OS Ubuntu 12.04 LTS 
Hadoop Cloudera CDH 4.7.1 
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profiling, execution time of TeraSort [9], a representative 
Hadoop benchmark, is measured with varying size of 
input data. TeraSort is widely used to evaluate the 
performance of Hadoop cluster because it requires both 
of CPU and I/O resources, while sorting is a main task of 
MapReduce job [11]. The number of Map slots and 
Reduce slots of each cluster node is configured as 16, 
identical to the number of CPU core of each cluster node. 
The size of input data varies from 32 GB to 256 GB, 
while the size of Input split is 128 MB. 

 
3. Distribution of Service Time 

 
The execution time distribution of each task is a key 

factor in configuring the queuing network for 
MapReduce modeling. The previous researches suppose 
that it is deterministic. However, according to our 
observation, it is widely varies. Fig. 3 shows the 
execution time distribution of each type of task. As 
shown in Fig. 3(a), execution time of Map task follows 
normal distribution, not deterministic. Fig. 3(b) and (c) 
are for the Shuffle sub-task and Reduce sub-task, 
respectively. As seen from the figures, they also show 
normal distribution. Therefore, normal distribution is 
assumed as the distribution of service time of each 
queuing station. 

4. Average Service Time 
 
In this subsection average service time of each 

queuing station is obtained through profiling. Fig. 4(a) 
shows the execution time of Map tasks with varying size 
of input data. As mentioned earlier, the execution time of 
Map task is determined by the size of Input split (ISplit), 
not by the size of Input data (ITotal). Therefore, the 
average service time of Map station is obtained by 
averaging all measured execution time of Map tasks. Fig. 
4(b) and (c) show average execution time of Shuffle sub-
task and Reduce sub-task, respectively. Unlike Map task, 
the average execution time of them increases linearly in 
proportion to the size of input data. Therefore, the 
average service time of Shuffle and Reduce stations can 
be decided using the linear regression technique. Fig. 5 
shows the average execution time of Shuffle and Reduce 
sub-task in HDD-Hadoop cluster with varying size input 
data. Like SSD-Hadoop, the average execution time of 
each sub-task increases linearly. The linear regression is 
thus applicable to the HDD-Hadoop. Table 3 summarizes 
the average and standard deviation of service time of 
Map, Shuffle and Reduce stations, respectively. Finally, 
the distribution of service time of each queuing station on 
MapReduce queuing network is determined. 
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Fig. 3. The distribution of task execution time (a) Map task, (b) Shuffle sub-task, (c) Reduce sub-task 
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Fig. 4. Task execution time with varying input size (SSD-Hadoop) (a) Map task, (b) Shuffle sub-task, (c) Reduce sub-task 
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V. VALIDATION AND ANALYSIS 

The effectiveness of the MapReduce queuing network 
presented in the previous section is verified by 
comparing the simulation results with the measured 
execution time. In addition, the number of nodes required 
by HDD-Hadoop to deliver an equivalent performance to 
SSD-Hadoop is estimated using the developed model. It 
reveals that SSD is more cost effective than HDD as the 
storage media of Hadoop cluster. 

 
1. Validation of Performance Model 

 
The execution time of TeraSort is simulated using 

JMT [10], a queuing network simulator. 
Fig. 6(a) shows the result of simulation on SSD-

Hadoop. As seen in the figure, the simulated results are 
very close to those of experiment regardless of the size of 

input data. The maximum difference is less than 7%. 
The execution times for HDD-Hadoop are shown in 

Fig. 6(b). Like the results for SSD-Hadoop, the 
simulation results are also close to those of experiment 
on HDD-Hadoop. For small input sizes (32 GB~256 GB), 
the difference is less than about 6%. Notice from Fig. 
6(b) that the difference for large input data of 512GB is 
17.6%. This is because the fluctuation of execution time 
in HDD-Hadoop is larger than SSD-Hadoop due to 
mechanical movement of HDDs.  

The performance of Hadoop cluster is significantly 
influenced by the number of nodes organizing the 
Hadoop cluster. Therefore, the proposed performance 
model of MapReduce is verified with varying number of 
Data nodes. Note that there is only a single Name node in 
all the test cases. Fig. 7(a) and (b) compare the 
simulation results with experiment results with varying 
number of Data nodes. As seen in the figures, the 
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Fig. 5. Task execution time with varying input size (HDD-Hadoop) (a) Map task, (b) Shuffle sub-task, (c) Reduce sub-task 
 

Table 3. The service time distribution of each type of queuing station 

 Map Shuffle Reduce 
 Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. 

SSD-Hadoop 8473 290 1973 139 1319 58 
HDD-Hadoop 10962 2599 13898 5240 1026 74 
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Fig. 6. The execution time of TeraSort with varying size input data on (a) SSD-Hadoop, (b) HDD-Hadoop 
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proposed performance model can precisely predict the 
execution time of TeraSort for the Hadoop cluster 
consisting of different number of nodes. Observe that the 
maximum difference is about 5% and 7% for SSD-
Hadoop and HDD-Hadoop, respectively. 
 

2. Cost Efficiency 
 
The cost-per-performance is the metric commonly 

used to compare the cost efficiency of SSD-Hadoop and 
HDD-Hadoop in the previous researches. However, the 
influence of the number of nodes on the performance of 
Hadoop cluster was not considered. In this section, using 
the proposed performance model, the number of Data 
nodes required for HDD-Hadoop to allow equivalent 
performance as SSD-Hadoop is estimated. 

We first obtain the execution time of TeraSort on 
HDD-Hadoop with increasing number of Data nodes as 
shown in Fig. 8. Here, the size of input data is 64 GB, 
and SSD-8 denotes the execution time of SSD-Hadoop 
consisting of 8 Data nodes. The simulation results 
indicate that HDD-Hadoop requires 11 Data nodes to 
achieve an equivalent performance as SSD-8. 

Table 4 describes the price of hardware components 
each cluster node has. Based on that, the cost for building 
an SSD-Hadoop and HDD-Hadoop displaying an 
equivalent performance are compared. As mentioned 
above, the HDD-Hadoop cluster needs 3 more Data 
nodes to achieve a same performance as SSD-8. As a 
result, SSD-Hadoop is 20% more cost efficient than 
HDD-Hadoop as shown in Table 5. This observation 
indicates that adoption of SSDs is a more cost efficient 
solution than increasing the number of nodes to build 
Hadoop clusters. Moreover, small size Hadoop cluster 
allows Reducing server management cost including the 
power, space and cooling as well as the system building 
cost. 

VI. CONCLUSIONS 

In this paper MapReduce performance model has been 
proposed to predict the execution time of MapReduce job 
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Fig. 7. The execution time of TeraSort with varying number of 
Data nodes (a) SSD-Hadoop, (b) HDD-Hadoop 
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Fig. 8. The execution time of TeraSort with varying number of 
Data nodes on Hadoop cluster 

 
Table 4. Price of Hardware Components Constituting Hadoop 
Cluster Node (at Amazon) 

Component Description Price($) 
Motherboard SuperMicro X9DR7-LN4F 3,150 

Processor Intel Xeon E5-2600 x2 558 
Memory DDR3 ECC 16GB (256 GB) x16 2,448 

NIC Intel X-540 T2 10 GbE 439 
HDD WD VelociRaptor 600 GB  x4 576 
SSD Samsung SSD840 512 GB  x4 1,292 

 
Table 5. Cost-per-Performance (SSD-Hadoop vs. HDD-
Hadoop) 

Setup Required Num. of 
Nodes 

Total Cost 
($) 

Cost per 
Performance 

SSD-Hadoop 8 63,096 0.8 
HDD-Hadoop 11 78,881 1.0 
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using queuing network. In addition, the cost efficiency of 
SSDs and HDDs are compared as the storage media of 
Hadoop clusters. The simulation and experiment reveal 
that the difference is up to 6.8% except for HDD-Hadoop 
of large input data (17.6%). Moreover, the proposed 
model is accurate even with varying number of Data 
nodes. The simulation results show that HDD-Hadoop 
needs 1.4 times more Data nodes than SSD-Hadoop to 
achieve the same performance. Consequently, SSD-
Hadoop can said to be more cost efficient than HDD-
Hadoop.  

REFERENCES 

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified 
Data Processing on Large Clusters,” Operating 
Systems Design and Implementation, 2004, OSDI 
2004, 6th Symposium on, Dec., 2004. 

[2] S. Ghemawat, H. Gobioff, and S. Leung, ”The 
Google File System,” Symposium on Operating 
systems principles, 2003. SOSP 2003, 19th ACM 
symposium on, pp. 29-43, Dec., 2003. 

[3] Apache Hadoop Project, http://hadoop.apache.org      
[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, 

“The Hadoop Distributed File System,” Mass 
Storage Systems and Technologies, 2010, MSST 
2010, IEEE 26th Symposium on, May, 2010. 

[5] S. Moon, J. Lee, and Y. Kee, “Introducing SSDs to 
the Hadoop MapReduce Framework,” Cloud 
Computing, 2014, CLOUD 2014, IEEE 7th 
International Conference on, July, 2014. 

[6] K. Kambatla, and Y. Chen, “The Truth About 
MapReduce Performance on SSDs,” Large 
Installation System Administration, 2014, LISA 
2014, 28th USENIX conference on, pp. 109-117, 
Nov., 2014. 

[7] X. Yang and J. Sun, “An analytical performance 
model of MapReduce,” Cloud Computing and 
Intelligence Systems, 2011, CCIS 2011, IEEE 
International Conference on, pp. 306-310, Sept., 
2011. 

[8] Cloudera Inc., CDH (Cloudera Distributed Hadoop), 
http://www.cloudera.com/content/cloudera/en/prod
ucts-and-services/cdh.html  

[9] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, 
“The HiBench Benchmark Suite: Characterization 

of the MapReduce-Based Data Analysis,” Data 
Engineering Workshops, 2010, ICDEW 2010, IEEE 
26th International Conference on, pp. 41-51, Mar., 
2010. 

[10] JMT (Java Modeling Tools), http://jmt.sourceforge. 
net/ 

[11] E. Krevat, T. Shiran, E. Anderson, J. Tucek, J. J. 
Wylie, and G. R. Ganger, “Understanding 
Inefficiencies in Data-Intensive Computing,” 
Carnegie Mellon University Technical Report, Jan., 
2012. 

 
 

Sungyong Ahn received the B.S., 
Ph.D. degree in the Department of 
Computer Science and Engineering 
from Seoul National University, 
Korea, in 2003 and 2012, respectively. 
He has been a Senior Engineer at 
Samsung Electronics since 2012. His 

interests include operating system, solid-state disk, and 
Bigdata. 

 
 

Sangkyu Park received the B.S., 
M.S. degrees in the Department of 
Electrical Engineering from University 
of Seoul, Seoul, Korea, in 1998 and 
2000 respectively. In 2012, he joined 
at Samsung Electronics, where he 
has been working in the area of flash 

device SW. His interests include flash storage and 
middleware for Big Data. 

 


