
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 ISSN(Print) 1598-1657
http://dx.doi.org/10.5573/JSTS.2015.15.5.511 ISSN(Online) 2233-4866

Manuscript received Apr. 17, 2015; accepted Jun. 8, 2015
DS Software R&D Center, Samsung Electronics Co., Ltd.
E-mail : {sungyong.ahn, skyu7.park}@samsung.com

An Analytical Approach to Evaluation of SSD Effects
under MapReduce Workloads

Sungyong Ahn and Sangkyu Park

Abstract—As the cost-per-byte of SSDs dramatically
decreases, the introduction of SSDs to Hadoop
becomes an attractive choice for high performance
data processing. In this paper the cost-per-
performance of SSD-based Hadoop cluster (SSD-
Hadoop) and HDD-based Hadoop cluster (HDD-
Hadoop) are evaluated. For this, we propose a
MapReduce performance model using queuing
network to simulate the execution time of MapReduce
job with varying cluster size. To achieve an accurate
model, the execution time distribution of MapReduce
job is carefully profiled. The developed model can
precisely predict the execution time of MapReduce
jobs with less than 7% difference for most cases. It is
also found that SSD-Hadoop is 20% more cost
efficient than HDD-Hadoop because SSD-Hadoop
needs a smaller number of nodes than HDD-Hadoop
to achieve a comparable performance, according to
the results of simulation with varying the number of
cluster nodes.

Index Terms—MapReduce, Hadoop, performance
modeling, SSDs, cost-per-performance

I. INTRODUCTION

MapReduce [1] is a programing model which was
suggested for large data parallel processing by Google.
Apache Hadoop [3, 4] is an open source implementation
of MapReduce and Google File System (GFS) [2].

Recently, Hadoop was become a de facto standard in the
area of BigData analytics.

As the cost-per-byte of SSDs dramatically decreases
and high performance data processing is increasingly
important, the introduction of SSDs to Hadoop becomes
an attractive choice [5, 6]. SSDs have much higher I/O
performance than HDDs. As a result, SSDs can improve
the performance of Hadoop cluster by removing the I/O
bottleneck caused by low I/O performance of HDDs.
However, the cost-per-byte of SSDs is still higher than
that of HDDs.

The previous researches compared the cost-per-
performance of SSDs with that of HDDs to highlight the
high I/O performance of SSDs. Moon et al [5] evaluated
different storage configurations using Hadoop benchmark.
The results indicated that SSDs are suitable for Hadoop
as intermediate data storage to increase the cost
efficiency. Kambalta et al [6] compared the cost-per-
performance of SSDs and HDDs under equal-bandwidth
constraints. However, they concerned only the cost
efficiency of Hadoop clusters having same number of
nodes, regardless of the performance of data processing.

The performance of Hadoop cluster can be improved
not only by using SSDs in place of HDDs but also by
increasing the number of nodes. Therefore, it is needed to
compare the cost efficiency of SSD-based Hadoop
cluster (SSD-Hadoop) and HDD-based Hadoop cluster
(HDD-Hadoop), displaying equal throughput, regardless
of the number of nodes in the cluster. In this paper we
propose a novel MapReduce performance model using
queuing network to predict the execution time of
MapReduce jobs. The simulation and experiment results
reveal that the proposed performance model can predict
the execution time of MapReduce jobs with less than

512 SUNGYONG AHN et al : AN ANALYTICAL APPROACH TO EVALUATION OF SSD EFFECTS UNDER MAPREDUCE …

about 7% difference for most cases. Using the
performance model, the execution time of MapReduce
jobs with varying number of cluster nodes is also
investigated. It reveals that HDD-Hadoop needs 1.4
times more Data nodes than SSD-Hadoop to achieve the
same performance.

The remainder of this paper is organized as follows.
Section II introduces the related works. Section III
describes MapReduce workloads, and Section IV
proposes the MapReduce queuing network model.
Section V validates the proposed model and compares
the cost efficiency of HDD-Hadoop and SSD-Hadoop
cluster. The conclusion is given in Section VI.

II. RELATED WORK

There exist numerous studies evaluating the
performance implication of SSDs in MapReduce
workloads. Moon et al [5] compared the cost efficiency
of various storage configurations using TeraSort, a
representative Hadoop benchmark. Their study reveals
that using SSDs as intermediate data storage of Hadoop
is the most cost efficient solution because intermediate
data of Hadoop are accessed mainly by random I/O
request. Using SSDs for storing the intermediate data of
Hadoop increases the cost efficiency by 15%, in
comparison to HDD-only Hadoop cluster. Kambalta et al
[6] compared the cost-per-performance of HDDs and
SSDs, both of which have a same aggregated bandwidth,
not capacity. According to their results of experiment,
SSD-Hadoop is 2.5 times more expensive in terms of
cost-per-performance, while achieving up to 70% higher
performance compared to HDD-Hadoop. The previous
studies compared the cost-per-performance of HDD-
Hadoop and SSD-Hadoop under the constraint of
equivalent cluster size. However, to get more practical
insight, the cost efficiency should be estimated with the
Hadoop clusters displaying the same bandwidth of data
processing, which it reveals the cost efficient way for
building Hadoop cluster allowing the required
performance. We investigate this problem using the
performance model of MapReduce.

Building an effective performance model of
MapReduce is difficult because MapReduce jobs are
processed in the distributed and parallel fashion. There
are previous studies proposing the performance models

and performance optimization method for MapReduce.
Yang suggested optimal number of Map tasks and
Reduce tasks using their own performance model in [7].
Here it can be applicable only to restricted input size.
Krevat et al [11] proposed an analytical performance model
of MapReduce job displaying optimal performance of
Hadoop cluster. The model does not predict the
execution time of MapReduce jobs.

III. MAPREDUCE OPERATION

1. Overview of MapReduce

Fig. 1 briefly describes the dataflow of MapReduce

jobs. The MapReduce jobs are processed in two phases:
Map and Reduce. Each phase is divided into multiple
tasks, which are performed in parallel among multiple
nodes.

First, Map phase is divided into multiple Map tasks,
each of which is in charge of a part of input data, called
‘Input split’. They are all identical sizes. As the size of
input data increases, the number of Map tasks also
linearly increases because the size of Input split is fixed
and the number of Input splits is same as the number of
Map tasks. Each Map task performs user-defined Map
function for its own Input split, and then writes the
results at local disk. Note that the output of Map tasks is
called ‘Intermediate data’, which is transferred to
Reduce tasks.

Reduce phase starts only after all Map tasks are
complete. Like the Map phase, Reduce phase is divided
into multiple Reduce tasks. At first, Reduce tasks copy
the required Intermediate data from remote nodes.
Following the operation called shuffling, the collected
chunks of Intermediate data are merged. Note that

Map task

Split

Split

In
pu

t
D

at
a

Split

Split

Map

Reduce
Map

Map

Map

Reduce

Map Shuffle

O
ut

pu
t D

at
a

Reduce

Reduce task

Fig. 1. The dataflow of MapReduce

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 513

shuffled and merged Intermediate data are input to the
user-defined Reduce function. Finally, the output of
Reduce function is written to the HDFS. In this paper, we
propose to split a Reduce task into two sub-tasks: Shuffle
sub-task and Reduce sub-task because they have different
type of workloads. A Shuffle sub-task generates massive
network traffic for copying Intermediate data from
remote nodes. On the other hand, Reduce sub-task
performs user-defined Reduce function and writes final
output to the HDFS. Therefore, I/O resource is the
mainly consumed resource. Because it is difficult to
analyze a system performing various operations as a
single unit, Reduce task is split into two sub-tasks for
more precise and tractable modeling.

2. Execution Time of MapReduce Job

In this paper, execution time of MapReduce jobs is

employed as the performance metric of Hadoop. It is
affected by various system parameters and workload
parameters are listed in Table 1. The system parameters
define the configuration of Hadoop cluster, while the
workload parameters do the characteristic of MapReduce
jobs. Here execution time of MapReduce jobs is analyzed.

First of all, Map phase consists of multiple iterations
of Map tasks, while each iteration includes the same
number of Map tasks, equivalent to the number of Map
slots. Therefore, execution time of Map phase (TMP) is as

follows.

 m
MP m

m

N
T T

S
é ù

= ´ê ú
ê ú

.

Execution time of a Map task is comprised of reading

Input split, processing Map function, and writing the
Map output. Supposing linear function for Map function,
execution time of Map tasks (Tm) is determined by the
size of Input split (ISplit). Note that the size of Input split
is determined according to the size of block of HDFS.

 ()Split Split m
m Split

r w

I I R
T f I

B B
´

= + + .

As mentioned above, Reduce phase is divided into

Shuffle sub-task and Reduce sub-task, which are
executed sequentially. Recall that the number of Reduce
task need to be equal to the number of Reduce slot for
optimized performance [7]. In other words, all Reduce
tasks are processed simultaneously. Therefore, execution
time of Reduce phase (TRP) is the longest execution time
of Reduce tasks as follows.

 ()RP s rT Max T T= + .

A Shuffle sub-task copies the required parts of

Intermediate data from Map tasks to Reduce tasks.
Hence execution time of Shuffle sub-task (Ts) is
proportional to the size of Input data (ITotal).

 Total m
s

r n

I R
T

N B
´

=
´

.

A Reduce sub-task processes the Reduce function, and

then writes the final output to the HDFS. Supposing
linear Reduce function, execution time of Reduce sub-
task (Tr) increases linearly in proportion to the size of
Input data (ITotal).

 Total m Total m r
r

r r w

I R I R R
T g

N N B
æ ö´ ´ ´

= +ç ÷
´è ø

.

Since the Shuffle and Reduce sub-task are proportional

to the size of Input data (ITotal), linear regression
technique can be used to find the average service demand

Table 1. Parameters of MapReduce framework

Category Symbol Definition
Sm The number of Map slots
Sr The number of Reduce slots
N The number of cluster nodes

Br,Bw The read/write bandwidth of storage
Bn The network bandwidth

System
parameters

HB The size of HDFS block
ITotal The size of total input data
ISplit The size of Input split (= HB)

Nm The number of Map tasks (= Total

Split

I
I

)

Nr The number of Reduce tasks
f() The Map function
g() The Reduce function

Rm The ratio between input and output of
Map function

Workload
parameters

Rr
The ratio between input and output of
Reduce function

514 SUNGYONG AHN et al : AN ANALYTICAL APPROACH TO EVALUATION OF SSD EFFECTS UNDER MAPREDUCE …

of each sub-task.

IV. MODELING OF MAPREDUCE

In this section a new performance model for
MapReduce is proposed which can predict the execution
time of MapReduce job using queuing network. A
queuing network model is useful for system modeling
because of its simplicity and flexibility. In addition, the
well formulated queuing network theory can be adopted
to analyze the target system.

1. Modeling Strategy

Fig. 2 shows the queuing network describing the

MapReduce operation. Observe from the figure that the
MapReduce operation is handled in two phases, Map and
Reduce, while the Reduce phase consists of Shuffle stage
and Reduce stage.

A. Map tasks
In the MapReduce framework, the maximum number

of Map tasks processed simultaneously is limited by the
number of Map slots. Each Map task is assigned to
available Map slot. However, if there is no available Map
slot, Map tasks should be delayed until Map slot
becomes available. Therefore, each Map slot can be
represented as a queuing station (Map station) in Fig. 2.

B. Fork-Join stations
The Fork-Join station of queuing network is used to

describe the parallel processing of MapReduce job. In the
Fork station (FM), MapReduce job is divided into
multiple Map tasks which are distributed to multiple Map

stations. The MapReduce job is queued in the Join
station (JM) until all Map tasks are completed. Note that
the Fork-Join mechanism is very suitable to model the
parallelism of MapReduce operation. Likewise, Reduce
phase is also described with Fork-Join stations (FR - JR)

C. Shuffle and Reduce sub-tasks
When all Map tasks are finished, the Reduce phase

begins. Similar to Map phase, Reduce tasks are
distributed to multiple Reduce slots in Fork station (FR)
and merged in Join station (JR). Recall that a Reduce task
is partitioned into two sub-tasks, Shuffle sub-task and
Reduce sub-task, which are performed sequentially.
Therefore, each Reduce slot is described as two type of
queuing stations; Shuffle station and Reduce station
which take charge of Shuffle sub-task and Reduce sub-
task, respectively. Then, the Shuffle station and Reduce
station are grouped into a Finite Capacity Region in Fig.
2. In the Finite Capacity Region, the aggregated number
of shuffle sub-tasks and Reduce sub-tasks is bound by
the number of Reduce slots.

As described above, the MapReduce operation can be
effectively represented with queuing network. In the next
section, the results of an experiment are introduced to
determine the distribution of service time of each
queuing station.

2. Experiment Setup

To profile the execution time of each task, a Hadoop

cluster consisting of one Name node and eight Data
nodes is built. Here all cluster nodes are identically
configured as summarized in Table 2. For the
convenience of installation and management, CDH 4.7.1
(Cloudera Distributed Hadoop) [8] is employed. For

FM JM FR JR

Map Shuffle Reduce

Finite capacity region
F J Fork-Join station

Queuing station

··· ···

Map Phase Reduce Phase

Fig. 2. The queuing network model of MapReduce

Table 2. The hardware and software configuration of a cluster
node.

Component Description
Processor Intel Xeon E5-2670 (8 cores) 2.6 GHz * 2
Memory 1600MHz DDR3 16GB * 16 = 256 GB

HDD WD VelociRaptor 600 GB
(SATA3/10 Krpm/32M)

SSD Samsung SSD840 512 GB (SATA3)
Network 10 Gigabit Ethernet NIC

OS Ubuntu 12.04 LTS
Hadoop Cloudera CDH 4.7.1

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 515

profiling, execution time of TeraSort [9], a representative
Hadoop benchmark, is measured with varying size of
input data. TeraSort is widely used to evaluate the
performance of Hadoop cluster because it requires both
of CPU and I/O resources, while sorting is a main task of
MapReduce job [11]. The number of Map slots and
Reduce slots of each cluster node is configured as 16,
identical to the number of CPU core of each cluster node.
The size of input data varies from 32 GB to 256 GB,
while the size of Input split is 128 MB.

3. Distribution of Service Time

The execution time distribution of each task is a key

factor in configuring the queuing network for
MapReduce modeling. The previous researches suppose
that it is deterministic. However, according to our
observation, it is widely varies. Fig. 3 shows the
execution time distribution of each type of task. As
shown in Fig. 3(a), execution time of Map task follows
normal distribution, not deterministic. Fig. 3(b) and (c)
are for the Shuffle sub-task and Reduce sub-task,
respectively. As seen from the figures, they also show
normal distribution. Therefore, normal distribution is
assumed as the distribution of service time of each
queuing station.

4. Average Service Time

In this subsection average service time of each

queuing station is obtained through profiling. Fig. 4(a)
shows the execution time of Map tasks with varying size
of input data. As mentioned earlier, the execution time of
Map task is determined by the size of Input split (ISplit),
not by the size of Input data (ITotal). Therefore, the
average service time of Map station is obtained by
averaging all measured execution time of Map tasks. Fig.
4(b) and (c) show average execution time of Shuffle sub-
task and Reduce sub-task, respectively. Unlike Map task,
the average execution time of them increases linearly in
proportion to the size of input data. Therefore, the
average service time of Shuffle and Reduce stations can
be decided using the linear regression technique. Fig. 5
shows the average execution time of Shuffle and Reduce
sub-task in HDD-Hadoop cluster with varying size input
data. Like SSD-Hadoop, the average execution time of
each sub-task increases linearly. The linear regression is
thus applicable to the HDD-Hadoop. Table 3 summarizes
the average and standard deviation of service time of
Map, Shuffle and Reduce stations, respectively. Finally,
the distribution of service time of each queuing station on
MapReduce queuing network is determined.

93009000870084008100780075007200

200

150

100

50

0

Execution time (ms)

Fr
eq

ue
nc

y

40500390003750036000345003300031500

25

20

15

10

5

0

Execution time (ms)

Fr
eq

ue
nc

y

260002500024000230002200021000

35

30

25

20

15

10

5

0

Execution time (ms)

Fr
eq

ue
nc

y

 (a) (b) (c)

Fig. 3. The distribution of task execution time (a) Map task, (b) Shuffle sub-task, (c) Reduce sub-task

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

Ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300

Ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

Ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

 (a) (b) (c)

Fig. 4. Task execution time with varying input size (SSD-Hadoop) (a) Map task, (b) Shuffle sub-task, (c) Reduce sub-task

516 SUNGYONG AHN et al : AN ANALYTICAL APPROACH TO EVALUATION OF SSD EFFECTS UNDER MAPREDUCE …

V. VALIDATION AND ANALYSIS

The effectiveness of the MapReduce queuing network
presented in the previous section is verified by
comparing the simulation results with the measured
execution time. In addition, the number of nodes required
by HDD-Hadoop to deliver an equivalent performance to
SSD-Hadoop is estimated using the developed model. It
reveals that SSD is more cost effective than HDD as the
storage media of Hadoop cluster.

1. Validation of Performance Model

The execution time of TeraSort is simulated using

JMT [10], a queuing network simulator.
Fig. 6(a) shows the result of simulation on SSD-

Hadoop. As seen in the figure, the simulated results are
very close to those of experiment regardless of the size of

input data. The maximum difference is less than 7%.
The execution times for HDD-Hadoop are shown in

Fig. 6(b). Like the results for SSD-Hadoop, the
simulation results are also close to those of experiment
on HDD-Hadoop. For small input sizes (32 GB~256 GB),
the difference is less than about 6%. Notice from Fig.
6(b) that the difference for large input data of 512GB is
17.6%. This is because the fluctuation of execution time
in HDD-Hadoop is larger than SSD-Hadoop due to
mechanical movement of HDDs.

The performance of Hadoop cluster is significantly
influenced by the number of nodes organizing the
Hadoop cluster. Therefore, the proposed performance
model of MapReduce is verified with varying number of
Data nodes. Note that there is only a single Name node in
all the test cases. Fig. 7(a) and (b) compare the
simulation results with experiment results with varying
number of Data nodes. As seen in the figures, the

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250 300

Ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300

Ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

Ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

 (a) (b) (c)

Fig. 5. Task execution time with varying input size (HDD-Hadoop) (a) Map task, (b) Shuffle sub-task, (c) Reduce sub-task

Table 3. The service time distribution of each type of queuing station

 Map Shuffle Reduce
 Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

SSD-Hadoop 8473 290 1973 139 1319 58
HDD-Hadoop 10962 2599 13898 5240 1026 74

0

100,000

200,000

300,000

400,000

500,000

600,000

32 64 96 128 160 192 224 256 512

Te
ra

So
rt

ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

Experiment
Simulation

0

100,000

200,000

300,000

400,000

500,000

600,000

32 64 96 128 160 192 224 256 512

Te
ra

So
rt

ex
ec

ut
io

n
tim

e
(m

s)

Total input size (GB)

Experiment
Simulation

 (a) (b)

Fig. 6. The execution time of TeraSort with varying size input data on (a) SSD-Hadoop, (b) HDD-Hadoop

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 517

proposed performance model can precisely predict the
execution time of TeraSort for the Hadoop cluster
consisting of different number of nodes. Observe that the
maximum difference is about 5% and 7% for SSD-
Hadoop and HDD-Hadoop, respectively.

2. Cost Efficiency

The cost-per-performance is the metric commonly

used to compare the cost efficiency of SSD-Hadoop and
HDD-Hadoop in the previous researches. However, the
influence of the number of nodes on the performance of
Hadoop cluster was not considered. In this section, using
the proposed performance model, the number of Data
nodes required for HDD-Hadoop to allow equivalent
performance as SSD-Hadoop is estimated.

We first obtain the execution time of TeraSort on
HDD-Hadoop with increasing number of Data nodes as
shown in Fig. 8. Here, the size of input data is 64 GB,
and SSD-8 denotes the execution time of SSD-Hadoop
consisting of 8 Data nodes. The simulation results
indicate that HDD-Hadoop requires 11 Data nodes to
achieve an equivalent performance as SSD-8.

Table 4 describes the price of hardware components
each cluster node has. Based on that, the cost for building
an SSD-Hadoop and HDD-Hadoop displaying an
equivalent performance are compared. As mentioned
above, the HDD-Hadoop cluster needs 3 more Data
nodes to achieve a same performance as SSD-8. As a
result, SSD-Hadoop is 20% more cost efficient than
HDD-Hadoop as shown in Table 5. This observation
indicates that adoption of SSDs is a more cost efficient
solution than increasing the number of nodes to build
Hadoop clusters. Moreover, small size Hadoop cluster
allows Reducing server management cost including the
power, space and cooling as well as the system building
cost.

VI. CONCLUSIONS

In this paper MapReduce performance model has been
proposed to predict the execution time of MapReduce job

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000

0 2 4 6 8 10

Te
ra

So
rt

ex
ec

ut
io

n
tim

e
(m

s)

The number of Data nodes

Experiment
Simulation

(a)

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000

0 2 4 6 8 10

Te
ra

So
rt

ex
ec

ut
io

n
tim

e
(m

s)

The number of Data nodes

Experiment
Simulation

(b)

Fig. 7. The execution time of TeraSort with varying number of
Data nodes (a) SSD-Hadoop, (b) HDD-Hadoop

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

7 8 9 10 11 12 13 14 15 16 17

Te
ra

So
rt

ex
ec

ut
io

n
tim

e
(m

s)

The number of Data nodes

Simulation(HDD)
SSD-8

Fig. 8. The execution time of TeraSort with varying number of
Data nodes on Hadoop cluster

Table 4. Price of Hardware Components Constituting Hadoop
Cluster Node (at Amazon)

Component Description Price($)
Motherboard SuperMicro X9DR7-LN4F 3,150

Processor Intel Xeon E5-2600 x2 558
Memory DDR3 ECC 16GB (256 GB) x16 2,448

NIC Intel X-540 T2 10 GbE 439
HDD WD VelociRaptor 600 GB x4 576
SSD Samsung SSD840 512 GB x4 1,292

Table 5. Cost-per-Performance (SSD-Hadoop vs. HDD-
Hadoop)

Setup Required Num. of
Nodes

Total Cost
($)

Cost per
Performance

SSD-Hadoop 8 63,096 0.8
HDD-Hadoop 11 78,881 1.0

518 SUNGYONG AHN et al : AN ANALYTICAL APPROACH TO EVALUATION OF SSD EFFECTS UNDER MAPREDUCE …

using queuing network. In addition, the cost efficiency of
SSDs and HDDs are compared as the storage media of
Hadoop clusters. The simulation and experiment reveal
that the difference is up to 6.8% except for HDD-Hadoop
of large input data (17.6%). Moreover, the proposed
model is accurate even with varying number of Data
nodes. The simulation results show that HDD-Hadoop
needs 1.4 times more Data nodes than SSD-Hadoop to
achieve the same performance. Consequently, SSD-
Hadoop can said to be more cost efficient than HDD-
Hadoop.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” Operating
Systems Design and Implementation, 2004, OSDI
2004, 6th Symposium on, Dec., 2004.

[2] S. Ghemawat, H. Gobioff, and S. Leung, ”The
Google File System,” Symposium on Operating
systems principles, 2003. SOSP 2003, 19th ACM
symposium on, pp. 29-43, Dec., 2003.

[3] Apache Hadoop Project, http://hadoop.apache.org
[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,

“The Hadoop Distributed File System,” Mass
Storage Systems and Technologies, 2010, MSST
2010, IEEE 26th Symposium on, May, 2010.

[5] S. Moon, J. Lee, and Y. Kee, “Introducing SSDs to
the Hadoop MapReduce Framework,” Cloud
Computing, 2014, CLOUD 2014, IEEE 7th
International Conference on, July, 2014.

[6] K. Kambatla, and Y. Chen, “The Truth About
MapReduce Performance on SSDs,” Large
Installation System Administration, 2014, LISA
2014, 28th USENIX conference on, pp. 109-117,
Nov., 2014.

[7] X. Yang and J. Sun, “An analytical performance
model of MapReduce,” Cloud Computing and
Intelligence Systems, 2011, CCIS 2011, IEEE
International Conference on, pp. 306-310, Sept.,
2011.

[8] Cloudera Inc., CDH (Cloudera Distributed Hadoop),
http://www.cloudera.com/content/cloudera/en/prod
ucts-and-services/cdh.html

[9] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,
“The HiBench Benchmark Suite: Characterization

of the MapReduce-Based Data Analysis,” Data
Engineering Workshops, 2010, ICDEW 2010, IEEE
26th International Conference on, pp. 41-51, Mar.,
2010.

[10] JMT (Java Modeling Tools), http://jmt.sourceforge.
net/

[11] E. Krevat, T. Shiran, E. Anderson, J. Tucek, J. J.
Wylie, and G. R. Ganger, “Understanding
Inefficiencies in Data-Intensive Computing,”
Carnegie Mellon University Technical Report, Jan.,
2012.

Sungyong Ahn received the B.S.,
Ph.D. degree in the Department of
Computer Science and Engineering
from Seoul National University,
Korea, in 2003 and 2012, respectively.
He has been a Senior Engineer at
Samsung Electronics since 2012. His

interests include operating system, solid-state disk, and
Bigdata.

Sangkyu Park received the B.S.,
M.S. degrees in the Department of
Electrical Engineering from University
of Seoul, Seoul, Korea, in 1998 and
2000 respectively. In 2012, he joined
at Samsung Electronics, where he
has been working in the area of flash

device SW. His interests include flash storage and
middleware for Big Data.

