
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 ISSN(Print) 1598-1657
http://dx.doi.org/10.5573/JSTS.2015.15.5.476 ISSN(Online) 2233-4866

Manuscript received Apr. 16, 2015; accepted Jun. 8, 2015
A part of this work was presented in Korean Conference on
Semiconductors, Seoul in Korea, Feb. 2015.
Ewha Womans University
E-mail : bahn@ewha.ac.kr

Efficient Management of PCM-based Swap Systems
with a Small Page Size

Yunjoo Park and Hyokyung Bahn

Abstract—Due to the recent advances in non-volatile
memory technologies such as PCM, a new memory
hierarchy of computer systems is expected to appear.
In this paper, we explore the performance of PCM-
based swap systems and discuss how this system can
be managed efficiently. Specifically, we introduce
three management techniques. First, we show that the
page fault handling time can be reduced by attaching
PCM on DIMM slots, thereby eliminating the
software stack overhead of block I/O and the context
switch time. Second, we show that it is effective to
reduce the page size and turn off the read-ahead
option under the PCM swap system where the page
fault handling time is sufficiently small. Third, we
show that the performance is not degraded even with
a small DRAM memory under a PCM swap device;
this leads to the reduction of DRAM’s energy
consumption significantly compared to HDD-based
swap systems. We expect that the result of this paper
will lead to the transition of the legacy swap system
structure of “large memory – slow swap” to a new
paradigm of “small memory – fast swap.”

Index Terms—Phase-change memory, swap system,
paging size, virtual memory

I. INTRODUCTION

To alleviate the widening speed gap between

processors and secondary storage, large DRAM memory
is used in modern computer systems. In particular, due to
the surge of memory-intensive applications and the
advent of multi-core technologies, the demand of DRAM
grows even rapidly. The enlarged memory capacity
seriously increases the energy consumption of computer
systems as DRAM memory cells need consistent refresh
operations to retain data. Such situations become even
worse as the fabrication of DRAM technology reaches its
limit at 20nm, and thus it is difficult to enhance the
density of DRAM any longer.

As a solution of DRAM’s energy consumption and
density limit, next-generation memory technologies such
as PCM (Phase Change Memory) and STT-MRAM (Spin
Torque Transfer Magnetic RAM) have been drawing
considerable interest [1-5]. Specifically, PCM hardware
technology has already reached a certain level of
maturity. As of 2013, PCM has been commercialized and
has been equipped in certain types of smartphones [6].
Patents published recently by Intel describe a detailed
micro-architecture to support PCM as memory and/or a
storage device, implying that PCM based computer
architectures are imminent [8, 20].

Two major PCM manufacturers, Micron and Samsung,
are forecasting that the primary interfaces for PCM is
likely to be DIMM and PCI-e rather than other block I/O
interfaces [6, 21]. This is because existing block I/O
interfaces such as SATA or SAS are not fast enough to
support high-performance PCM devices, limiting the full
advantages that PCM conveys. In addition, numerous
activities are underway to re-architect interfaces and the
underlying software to maximally utilize the
developments that are happening with PCM technologies
[22].

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 477

PCM has been considered as a replacement of DRAM
memory due to its various advantages such as low-power
consumption, high density, and byte-addressability [1, 2,
4]. However, PCM has weaknesses to substitute DRAM
memory in its entirety as its access time is relatively
slower (about 2-5x read, 8-50x write) compared to
DRAM and it has limited write endurance of 107–108. To
cope with this situation, studies on PCM memory [4] use
additional DRAM as shown in Fig. 1(a) and (b). Though
details of the architectures are different, the role of
additional DRAM memory is commonly to hide the slow
write operations of PCM and also to increase the lifespan
of PCM by absorbing frequent write operations.

More recently, PCM is being considered as a high-
speed storage medium (like swap device) as well as far
memory that is to be used along with DRAM [1, 4, 5, 18,
19]. In this paper, we adopt PCM as a high-speed swap
device as shown in Fig. 1(c) and investigate the
management issues and potential benefits of PCM swap
storage. In the traditional HDD-based swap systems, a
large amount of adjacent data are loaded together when a
page fault occurs since the seek time of a hard disk drive
is too large. To improve the CPU utilization, the process
that incurs a page fault becomes blocked and the CPU is
switched to other process while handling the page fault.
However, this may not be efficient for a PCM-based
swap system that is sufficiently fast and does not have
seek time.

In this paper, we explore the performance of PCM-
based swap systems and discuss how this system can be
managed efficiently. Specifically, we introduce three
management techniques for PCM-based swap systems.
First, we reduce the page fault handling time by attaching

PCM on DIMM slots and eliminate the software stack
overhead of block I/O; we also improve performance by
omitting the context switch while handling the page fault.
Second, we show that it is effective to reduce the page
size and turn off the read-ahead option under the PCM
swap system where the page fault handling time is
significantly small. Third, we show that the performance
is not degraded even with a small DRAM memory size
under a PCM swap device; this leads to the reduction of
DRAM’s energy consumption significantly compared to
HDD-based swap systems.

We expect that the result of this paper will lead to the
transition of the legacy swap system structure of “large
memory – slow swap” to a new paradigm of “small
memory – fast swap.”

The remainder of this paper is organized as follows.
Section II briefly describes the motivation of this
research. Section III shows the results of experiments
performed in this paper and analyzes them. Section IV
summarizes researches related to this study. Finally,
Section V concludes this paper.

II. MOTIVATIONS

In this section, we perform motivational experiments
to analyze the effectiveness of PCM-based swap systems.
The experiments were conducted with the virtual
memory access trace of four Linux applications, namely
freecell, gqview, kghostview, and xmms. (Details of the
workload characteristics will be described in Section III.)
For a comparison purpose, we also measure the
performance of HDD-based swap systems as well as that
of the PCM-based swap system.

L2 cache

L1 I-cache

PCM memory

DRAM buffer

Last level cache

CPU
L1 D-cache

PCM
memory

DRAM
memory

Linear address space

L2 cache

L1 I-cache

Last level cache

CPU
L1 D-cache

L2 cache

L1 I-cache

DRAM memory

Last level cache

CPU
L1 D-cache

PCM swap device

 (a) PCM memory with DRAM buffer (b) DRAM-PCM hybrid memory (c) PCM as a swap device

Fig. 1. Different memory architecture with PCM

478 YUNJOO PARK et al : EFFICIENT MANAGEMENT OF PCM-BASED SWAP SYSTEMS WITH A SMALL PAGE SIZE

Fig. 2 shows the total elapsed time of each workload
as the page size of the target system is varied. For
readers’ convenience, we use different scales for PCM
and HDD in the y-axis.

As shown in the figure, the performance of the PCM-
based swap system is improved significantly as the page
size becomes smaller in all cases. This result is obviously
different from the HDD-based swap system case, in
which the best performance is obtained when the page
size is 4 KB or more. This indicates that the page size of
4 KB, which is most commonly used in modern
computer systems, is not efficient for the PCM-based
swap system.

However, reducing the page size is not a simple issue
since the number of page table entries should be
increased as the page size shrinks. This would eventually
increase the memory requirement for the page table
dramatically. However, it is likely that the total main
memory capacity can be reduced when a small page size
is used because a variety of contents can be
accommodated even with a small DRAM capacity, and
the page fault handling time is fast enough under the
PCM storage. Therefore, we argue that the space
overhead of the page table can be relieved by shrinking
the total DRAM size of the system. Through our
experiments, we show that our system consisting of small

memory and fast swap storage exhibits competitive
performance and is also energy-efficient.

III. PERFORMANCE EVALUATIONS

In this section, we perform various experiments to find
efficient management techniques for PCM-based swap
systems.

1. Experiment Setup

Traces used in our experiments were extracted by the

Cachegrind tools of Valgrind 3.2.3 [23]. We capture the
virtual memory access traces from four applications used
on Linux Xwindows, namely, the freecell game, the
kghostview PDF file viewer, the gqview image editing
program, and the xmms music player. We filter out
memory references that are accessed directly from the
CPU cache memory and also reflect the write-back
property of the cache memory. The characteristics of
these traces are described in Table 1.

With these traces, we perform simulation experiments
to evaluate the performance of PCM-based swap systems.
We assume that PCM is put on DIMM slots and there is
no context switch while handling page faults. In the
simulation, the size of DRAM memory is varied from

0.0

0.5

1.0

1.5

2.0

2.5

0

2

4

6

8

10

12

14

512B 1KB 2KB 4KB 8KB 16KB

To
ta

l e
la

ps
ed

 tim
e

(m
s)

To
ta

l e
la

ps
ed

 tim
e

(1
00

s)

Page size

HDD
PCM

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0

2

4

6

8

10

12

14

512B 1KB 2KB 4KB 8KB 16KB

To
ta

l e
la

ps
ed

 tim
e

(m
s)

To
ta

l e
la

ps
ed

 tim
e

(1
00

s)

Page size

HDD
PCM

 (a) freecell (b) gqview

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0

5

10

15

20

25

30

35

40

45

512B 1KB 2KB 4KB 8KB 16KB

To
ta

l e
la

ps
ed

 tim
e

(m
s)

To
ta

l e
la

ps
ed

 tim
e

(1
00

s)

Page size

HDD
PCM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

5

10

15

20

25

30

35

512B 1KB 2KB 4KB 8KB 16KB

To
ta

l e
la

ps
ed

 tim
e

(m
s)

To
ta

l e
la

ps
ed

 tim
e

(1
00

s)

Page size

HDD
PCM

 (c) kghostview (d) xmms

Fig. 2. Total elapsed time of HDD and PCM swap systems as a function of the page size

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 479

5% to 100% of the total memory footprint of each
workload. The DRAM size of 100% implies the infinite
memory capacity where all pages referenced in the trace
can be loaded simultaneously, and thus replacement is
not needed. This is an unrealistic condition but presented
to show the complete performance trend while varying
the memory size. The page size is also varied from 512
bytes to 128 KB. We use 512 bytes as the minimum page
size because the page size cannot be smaller than the
cache block size managed in the last-level cache (LLC).
The CLOCK algorithm, which is widely used in virtual
memory systems, is adopted as a baseline page
replacement algorithm in our experiments [7].

The access time of a PCM device is composed of
TACCESS and TTRANSFER, where TACCESS is a static time
component needed for each independent access and
TTRANSFER is a time component proportional to the request
size. In our experiments, we set the values modeled in
the previous study [24]. Suppose that the proportional
time component of a write operation is TTRANSFER_write, that
of a read operation is TTRANSFER_read, and the size
independent time component of read and write operations
is TACCESS_read and TACCESS_write, respectively. When the
total number of read operations is Nread, the total number
of write operations is Nwrite, and the page size is SIZEp,
then the PCM access time by each request TEACH and the
total elapsed time TTOTAL can be calculated as follows.

TEACH = TACCESS + TTRANSFER
TTOTAL = Nread (TACCESS_read + TTRANSFER_read * SIZEp)
 + Nwrite (TACCESS_write + TTRANSFER_write * SIZEp)

2. Effects of the Page Size

Fig. 3 shows the total elapsed time of each workload

as a function of the page size. For each configuration, we
also vary the DRAM memory size from 5% to 100% of
the footprint of each workload. As shown in the figure,

the total elapsed time is improved as the page size
becomes smaller in all cases. This is because only the
necessary part to execute the program is loaded into
memory. Note that a hard disk drive has a significant
portion of size-independent time component to access
data, whereas PCM does not do so, and thus the transfer
size is critical to PCM performances. As we eliminate the
software I/O stack overhead and the context switch
overhead from the page fault handling process, reducing
the transfer size is important in minimizing the total cost
of a page fault. When the page size is reduced from 4KB
to 512 bytes, the performance is improved by 58.9% on
average.

3. Effects of Read-ahead

Modern operating systems such as Linux use a read-

ahead technique that loads several adjacent pages as well
as the requested page itself when a page fault occurs.
This is effective in disk storage systems to minimize the
head movement as storage accesses frequently exhibit
sequential behavior. In this section, we analyze the
effectiveness of read-ahead on the performance of PCM-
based swap systems.

Fig. 4 shows the total elapsed time of each workload
as the read-ahead window size is varied. In this
experiment, the page size is set to 512 bytes based on the
result of Section III-2. The total memory size is set to
10% of the memory footprint for each workload. As
shown in Fig. 4, the performance is improved
significantly when the read-ahead option is turned off.
Specifically, the total elapsed time is improved by 51.6%
on average and up to 80.7% when the read-ahead option
is turned off, in comparison with the read-ahead window
size of 8. This is because the cost of loading unnecessary
pages through read-ahead degrades the performance of
PCM-based swap systems significantly.

Table 1. Memory usage and reference count for each workload.

memory access count
workload memory usage

(KB) ratio of operations
total instruction read data read data write

xmms 8,050 reads : writes = 1 : 5.13 1,168,939 65,048 125,649 978,242
gqview 7,430 reads : writes = 1 : 1.30 610,685 93,242 172,044 345,399
freecell 10,080 reads : writes = 7.16 :1 490,175 114,233 315,902 60,040

kghostview 17,390 reads : writes = 13.93 : 1 1,546,135 380,609 1,061,986 103,540

480 YUNJOO PARK et al : EFFICIENT MANAGEMENT OF PCM-BASED SWAP SYSTEMS WITH A SMALL PAGE SIZE

4. Effects of Page Replacement Algorithms

In this section, we assess the effects of page

replacement algorithms in PCM-based swap systems.

CLOCK is a representative replacement algorithm for
virtual memory systems [7]. To support the replacement
algorithm in modern computer systems, a reference bit
and a dirty bit are provided for each memory page that

0

20

40

60

80

100

120

140

E
la

ps
ed

 ti
m

e
(m

s)

Page size

5%
10%
50%
100%

0

10

20

30

40

50

60

70

80

90

E
la

ps
ed

 ti
m

e
(m

s)

Page size

5%

10%

50%

100%

 (a) freecell (b) gqview

0
50

100
150
200
250
300
350
400
450
500

E
la

ps
ed

 ti
m

e
(m

s)

Page size

5%

10%

50%

100%

0

20

40

60

80

100

120

140

E
la

ps
ed

 ti
m

e
(m

s)
Page size

5%

10%

50%

100%

 (c) kghostview (d) xmms

Fig. 3. Total elapsed time of each workload as the page size of PCM swap systems is varied

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8

E
la

ps
ed

 ti
m

e
(m

s)

Read-ahead window size (pages)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 2 4 6 8

E
la

ps
ed

 ti
m

e
(m

s)

Read-ahead window size (pages)

 (a) freecell (b) gqview

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 2 4 6 8

E
la

ps
ed

 ti
m

e
(m

s)

Read-ahead window size (pages)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 2 4 6 8

E
la

ps
ed

 ti
m

e
(m

s)

Read-ahead window size (pages)

 (c) kghostview (d) xmms

Fig. 4. Total elapsed time of each workload as a function of the read-ahead window size

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 481

are set by the paging unit hardware. Specifically, on a hit
to a page, the paging unit hardware sets the reference bit
of the page to 1 when a read or a write reference for that
page occurs, and sets the dirty bit to 1 when a write
reference occurs. Then, pages are maintained in a
circular list. Whenever free page frames are needed,
CLOCK sequentially scans through the pages in the
circular list, starting from the current position, that is, the
position next to the last evicted page. This scan continues
until a page with a reference bit of zero is found, and that
page is then replaced. If the dirty bit of the victim page is
set to 1, the page is written back to swap storage since it
has been modified while resident in memory. In the
course of the scan, for every page with the reference bit
of 1, CLOCK clears it to 0, without removing the page
from memory. The reference bit of each page is an
indication of whether that page has recently been
accessed or not; and pages not referenced upon the return
of the clock-hand to that page will be replaced.

Though CLOCK estimates future page accesses by
considering the recency of references, it does not have
the ability to predict future write accesses. Though
CLOCK uses the dirty bit, this bit simply indicates that
the page was written at least once while resident in
memory. There is no way to convey the information that

the page has been recently written or not. Since a write
operation of PCM is significantly slower than a read
operation, it is necessary to predict future write accesses
and maintain pages likely to be written again in memory.

To this end, we devise a new algorithm CLOCK-W,
by simply changing the original CLOCK algorithm such
that the dirty bit is used to capture the recency of write
references for page replacement instead of the reference
bit. Specifically, CLOCK-W checks the dirty bit of the
page to which the clock-hand points. If the dirty bit is 1,
CLOCK-W clears the dirty bit and backs it up to a kernel
variable in the page structure. By so doing, OS still
knows that it is a dirty page that should be written back
to storage when selected as an eviction victim. If a page
with the dirty bit of zero is found, that page is replaced
since it is not a recently written page.

Fig. 5 shows the total elapsed time of CLOCK and
CLOCK-W as a function of the DRAM memory size. In
the figure, 100% memory size is an unrealistic condition
where the complete memory footprint can be loaded at
the same time, not incurring any page replacement. In
this case, the two algorithms perform the same. As
shown in the figure, CLOCK-W performs slightly better
than original CLOCK for call cases, even though it does
not consider the recency of read references. This is

0.00

0.05

0.10

0.15

0.20

0.25

100% 50% 10% 5%

El
ap

se
d

tim
e

(m
s)

DRAM memory size

CLOCK

CLOCK-W

0.00

0.10

0.20

0.30

0.40

0.50

100% 50% 10% 5%

El
ap

se
d

tim
e

(m
s)

DRAM memory size

CLOCK

CLOCK-W

 (a) freecell (b) gqview

0.00

0.15

0.30

0.45

0.60

0.75

100% 50% 10% 5%

E
la

ps
ed

 ti
m

e
(m

s)

DRAM memory size

CLOCK

CLOCK-W

0.00

0.20

0.40

0.60

0.80

1.00

100% 50% 10% 5%

E
la

ps
ed

 ti
m

e
(m

s)

DRAM memory size

CLOCK

CLOCK-W

 (c) kghostview (d) xmms

Fig. 5. Total elapsed time of each workload as a function of the DRAM memory size

482 YUNJOO PARK et al : EFFICIENT MANAGEMENT OF PCM-BASED SWAP SYSTEMS WITH A SMALL PAGE SIZE

because the cost of a write operation is even larger than
that of a read operation in PCM.

Though the performance of CLOCK-W is not much
better than CLOCK in our simple experiments, we can
state that the design of an efficient replacement algorithm
for the PCM-based swap system is needed to consider the
re-reference likelihood of write operations.

5. Effects of Reducing DRAM Memory Size

The energy consumption of DRAM memory is

becoming a dominant portion of the total system energy
due to the increasing memory capacity driven by
memory-intensive applications and multi-core processors.
In this section, we investigate the effects of reducing the
DRAM memory size when PCM-based swap storage is
adopted. Regarding the performance aspect, we have
already seen in Fig. 3 that a reasonably good
performance can be obtained even with the 10% DRAM
size of the total footprint when we use the page size of
512 bytes.

Fig. 6 shows the total energy consumption of PCM-
based swap systems with the 10% DRAM size in
comparison with the disk-based conventional swap
system with the 100% DRAM size. As shown in the
figure, the PCM-based swap system consumes 88.1%
less energy than the HDD-based swap system. This result
indicates that the new swap architecture of “small
memory – fast swap” will be effective in reducing the
energy consumption of future computer systems.

IV. RELATED WORK

Studies on adopting PCM in the memory hierarchy of

computer systems have focused on enhancing the write
performance and endurance of PCM. There are three
categories of research that aims at achieving these goals.

The first category uses a certain amount of DRAM to
reduce the number of writes that occurs on PCM [1, 5].
Dhiman et al. present a hybrid PCM and DRAM memory
architecture called PDRAM [5]. They focus on balancing
the write count of PCM by moving data located at a PCM
page to a DRAM page if the write count of the PCM
page becomes large. However, they do not consider the
placement or replacement issues. Qureshi et al. present
an architecture that uses DRAM as the last level cache
memory of PCM main memory [1]. This architecture
caches both clean and dirty pages in DRAM cache. Zhou
et al. present cache partitioning and replacement
algorithms under this architecture [15]. Their algorithms
aim at reducing the cache miss ratio as well as
writebacks from the DRAM cache. They also consider
the balance of PCM write queues in the design of
replacement algorithms. Seok et al. predicts page access
patterns and tries to migrate read-intensive pages to PCM
and write-intensive pages to DRAM [16]. For prediction
of read and write access patterns, they calculate the
weighting value using the ratio of writes to total
references. One problem with this scheme is that the
algorithm requires exact time information for every
memory reference, which is difficult to be implemented
in virtual memory systems.

The second category is to reduce the number of PCM
writes by programming only the cells whose contents
have been changed. This technique could enhance the
endurance of PCM but it accompanies comparison
overhead. Qureshi et al. present the line-level write-back
(LLWB) technique that writes only dirty cache lines
within a PCM page [1]. A similar technique is also
presented by Lee et al. [11]. These two techniques use a
dirty bit within each cache line that retains whether the
cache line is modified or not. Yang et al. present the data
comparison write that compares each bit in a PCM page
and then writes only modified bits [12]. Similar work is
also performed by Zhou et al. [9]. Cho and Lee present
the flip-n-write technique, which flips all bits in a page if
it incurs less number of bit writes [13]. Wongchaowart et
al. present a content-aware block placement algorithm
that selects a free block with similar contents among
those in the free block lists [14].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

freecell gqview kghostview xmms

E
ne

rg
y

C
on

su
m

pt
io

n
(n

om
al

iz
ed

)

Workload

PCM-based swap systems HDD-based swap systems

Fig. 6. Comparison of total energy consumption

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 483

The third category is the wear-leveling technique to
evenly distribute PCM writes. Coarse-grained and fine-
grained wear-leveling techniques have been separately
studied. For coarse-grained wear-leveling, Zhou et al.
present the segment swapping technique that swaps old
and young pages periodically [9]. Seong et al. present the
security refresh technique that prevents wear-out from
malicious attackers by constantly migrating physical
locations inside the PCM, obfuscating the actual data
placement from users and system software [10].

For fine-grained wear-leveling, Zhou et al. present the
row shifting technique, which shifts the position of bits in
a page in order to balance the number of bit writes within a
page [9]. Qureshi et al. present a similar technique called
FGWL (fine grained wear-leveling) that stores the lines of
each page in PCM in a rotated manner [1].

Wear-leveling techniques given above are table-based
translation schemes that require tables to track write
counts and to perform logical to physical address
mappings. To obviate overhead that comes from table-
based translation, Qureshi et al. propose the Start-Gap
wear-leveling method by using an algebraic mapping
between physical and logical addresses [17]. Without
table structures, Start-Gap uses just two registers, named
Start and Gap, to perform wear-leveling and still
achieves good PCM lifetime.

V. CONCLUSION

In this paper, we explored the empirical characteristics
of PCM-based swap systems and showed how this
system can be managed efficiently. Specifically, we
demonstrated that reducing the page size and turning off
the read-ahead option are effective in the PCM-based
swap system as the page fault handling time is
significantly small. We also showed that the performance
is not degraded but the DRAM’s energy consumption
can be reduced significantly when we use only a small
amount of DRAM memory. We expect that the result of
this paper will lead to the transition of the legacy swap
system structure of “large memory – slow swap” to a
new paradigm of “small memory – fast swap” in the
future.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation (NRF) grant funded by the Korea
government (MEST) (No. 2011-0028825).

REFERENCES

[1] M. Qureshi, V. Srinivasan, and J. Rivers, “Scalable
high performance main memory system using
phase-change memory technology,” Proc. IEEE
ISCA Conf., pp. 24-33, 2009.

[2] E. Lee, H. Bahn, and S.H. Noh, “Unioning of the
buffer cache and journaling layers with non-volatile
memory,” Proc. USENIX FAST Conf., pp. 73-80,
2013.

[3] J. Mogul, E. Argollo, M. Shah, and P. Faraboschi,
“Operating system support for NVM+DRAM
hybrid main memory,” Proc. USENIX HotOS
Workshop, 2009.

[4] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: a
write-history-aware page replacement algorithm for
hybrid PCM and DRAM memory architectures,”
IEEE Trans. Comput., vol. 63, no. 9, pp. 2187-2200,
2014.

[5] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a
hybrid PRAM and DRAM main memory system,”
Proc. ACM/IEEE Design Automation Conf.,
pp.664-559, 2009.

[6] Phase Change Memory Product, http://www.
micron.com/products/phase-change-memory, Micron,
2013.

[7] F.J. Corbato, “A paging experiment with the
multics system,” In Honor of P.M. Morse, MIT
Press, 1969.

[8] B. Nale, R. Ramanujan, M. Swaminathan, and T.
Thomas, “Memory channel that supports near
memory and far memory access,” PCT/US2011/
054421, 2013.

[9] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A
durable and energy efficient main memory using
phase change memory technology,” Proc. IEEE
ISCA Conf., pp.14-23, 2009.

[10] N. Seong, D. Woo, and H. Lee, “Security refresh:
prevent malicious wear-out and increase durability
for phase-change memory with dynamically

484 YUNJOO PARK et al : EFFICIENT MANAGEMENT OF PCM-BASED SWAP SYSTEMS WITH A SMALL PAGE SIZE

randomized address mapping,” Proc. IEEE ISCA
Conf., pp. 383-394, 2010.

[11] B. Lee, E. Ipek, O. Mutlu, and D. Burger,
“Architecting phase change memory as a scalable
DRAM alternative,” Proc. IEEE ISCA Conf., pp. 2-
13, 2009.

[12] B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu,
“A low power phase-change random access
memory using a data-comparison write scheme,”
Proc. IEEE Symp. Circuit and Syst., 2007.

[13] S. Cho and H. Lee, “Flip-N-Write: a simple
deterministic technique to improve PRAM write
performance, energy and endurance,” Proc. IEEE
Symp. Microarchitect., 2009.

[14] B.Wongchaowart, M. Iskander, and S. Cho, “A
content-aware block placement algorithm for
reducing PRAM storage bit writes,” Proc. IEEE
MSST Conf., pp.1-11, 2010.

[15] M. Zhou, Y. Du, B. Childers, R. Melhem, and D.
Mosse, “Writeback-aware partitioning and
replacement for last-level caches in phase change
main memory systems,” ACM Trans. Architect.
Code Optimization, vol. 8, no. 4, 2012.

[16] H. Seok, Y. Park, K. Park, and K. Park, “Efficient
page caching algorithm with prediction and
migration for a hybrid main memory,” Applied
Comput. Review, vol. 11, no. 4, 2011.

[17] M. Qureshi, J. Karidis, M. Franceschini, V.
Srinivasan, L. Lastras, and B. Abali, “Enhancing
lifetime and security of PCM-based main memory
with start-gap wear leveling,” Proc. IEEE Symp.
Microarchit., pp. 14-23, 2009.

[18] E. Lee, J. Jang, T. Kim, and H. Bahn, “On-demand
snapshot: an efficient versioning file system for
phase-change memory,” IEEE Trans. Knowledge &
Data Engineering, vol. 25, no. 12, pp.2841-2853,
2013.

[19] E. Lee, S. Yoo, and H. Bahn, “Design and
implementation of a journaling file system for
phase-change memory,” IEEE Trans. Comput., vol.
64, no. 5, pp. 1349-1360, 2015.

[20] R. Ramanujan, R. Agarwal, and G. Hinton,
“Apparatus and method for implementing a multi-
level memory hierarchy having different operating
modes,” US 20130268728 A1, Intel Corporation,
2013.

[21] J. Condit, E. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee, “Better I/O through
byte-addressable, persistent memory,” Proc. ACM
SOSP Conf., 2009.

[22] R. L. Coulson, “Co-optimizing systems, OS, appli-
cations, SSDs and NVM,” Proc. Non-Volatile
Memories Workshop, 2012.

[23] Valgrind, http://valgrind.org/
[24] H. Yoon et al., “Techniques for data mapping and

buffering to exploit asymmetry in MLC PCM,”
SAFARI Technical Report No. 2013-002, 2013.

Yunjoo Park received the BS degree
in computer science and engineering
from Ewha Womans University in
2015. She is currently a MS
candidate of computer science and
engineering at Ewha Womans
University, Korea. Her research

interests include operating systems, storage systems,
embedded systems, and real-time systems.

Hyokyung Bahn received the BS,
MS, and PhD degrees in computer
science from Seoul National Univer-
sity, in 1997, 1999, and 2002,
respectively. He is currently a full
professor of computer engineering at
Ewha University, Korea. His research

interests include operating systems, storage systems,
embedded systems, and real-time systems. He received
the Best Paper Awards at the USENIX Conference on
File and Storage Technologies in 2013.

