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Abstract—Due to the recent advances in non-volatile 
memory technologies such as PCM, a new memory 
hierarchy of computer systems is expected to appear. 
In this paper, we explore the performance of PCM-
based swap systems and discuss how this system can 
be managed efficiently. Specifically, we introduce 
three management techniques. First, we show that the 
page fault handling time can be reduced by attaching 
PCM on DIMM slots, thereby eliminating the 
software stack overhead of block I/O and the context 
switch time. Second, we show that it is effective to 
reduce the page size and turn off the read-ahead 
option under the PCM swap system where the page 
fault handling time is sufficiently small. Third, we 
show that the performance is not degraded even with 
a small DRAM memory under a PCM swap device; 
this leads to the reduction of DRAM’s energy 
consumption significantly compared to HDD-based 
swap systems. We expect that the result of this paper 
will lead to the transition of the legacy swap system 
structure of “large memory – slow swap” to a new 
paradigm of “small memory – fast swap.”    
 
Index Terms—Phase-change memory, swap system, 
paging size, virtual memory   

I. INTRODUCTION 

To alleviate the widening speed gap between 

processors and secondary storage, large DRAM memory 
is used in modern computer systems. In particular, due to 
the surge of memory-intensive applications and the 
advent of multi-core technologies, the demand of DRAM 
grows even rapidly. The enlarged memory capacity 
seriously increases the energy consumption of computer 
systems as DRAM memory cells need consistent refresh 
operations to retain data. Such situations become even 
worse as the fabrication of DRAM technology reaches its 
limit at 20nm, and thus it is difficult to enhance the 
density of DRAM any longer.   

As a solution of DRAM’s energy consumption and 
density limit, next-generation memory technologies such 
as PCM (Phase Change Memory) and STT-MRAM (Spin 
Torque Transfer Magnetic RAM) have been drawing 
considerable interest [1-5]. Specifically, PCM hardware 
technology has already reached a certain level of 
maturity. As of 2013, PCM has been commercialized and 
has been equipped in certain types of smartphones [6]. 
Patents published recently by Intel describe a detailed 
micro-architecture to support PCM as memory and/or a 
storage device, implying that PCM based computer 
architectures are imminent [8, 20].  

Two major PCM manufacturers, Micron and Samsung, 
are forecasting that the primary interfaces for PCM is 
likely to be DIMM and PCI-e rather than other block I/O 
interfaces [6, 21]. This is because existing block I/O 
interfaces such as SATA or SAS are not fast enough to 
support high-performance PCM devices, limiting the full 
advantages that PCM conveys. In addition, numerous 
activities are underway to re-architect interfaces and the 
underlying software to maximally utilize the 
developments that are happening with PCM technologies 
[22]. 
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PCM has been considered as a replacement of DRAM 
memory due to its various advantages such as low-power 
consumption, high density, and byte-addressability [1, 2, 
4]. However, PCM has weaknesses to substitute DRAM 
memory in its entirety as its access time is relatively 
slower (about 2-5x read, 8-50x write) compared to 
DRAM and it has limited write endurance of 107–108. To 
cope with this situation, studies on PCM memory [4] use 
additional DRAM as shown in Fig. 1(a) and (b). Though 
details of the architectures are different, the role of 
additional DRAM memory is commonly to hide the slow 
write operations of PCM and also to increase the lifespan 
of PCM by absorbing frequent write operations.  

More recently, PCM is being considered as a high-
speed storage medium (like swap device) as well as far 
memory that is to be used along with DRAM [1, 4, 5, 18, 
19]. In this paper, we adopt PCM as a high-speed swap 
device as shown in Fig. 1(c) and investigate the 
management issues and potential benefits of PCM swap 
storage. In the traditional HDD-based swap systems, a 
large amount of adjacent data are loaded together when a 
page fault occurs since the seek time of a hard disk drive 
is too large. To improve the CPU utilization, the process 
that incurs a page fault becomes blocked and the CPU is 
switched to other process while handling the page fault. 
However, this may not be efficient for a PCM-based 
swap system that is sufficiently fast and does not have 
seek time. 

In this paper, we explore the performance of PCM-
based swap systems and discuss how this system can be 
managed efficiently. Specifically, we introduce three 
management techniques for PCM-based swap systems. 
First, we reduce the page fault handling time by attaching 

PCM on DIMM slots and eliminate the software stack 
overhead of block I/O; we also improve performance by 
omitting the context switch while handling the page fault. 
Second, we show that it is effective to reduce the page 
size and turn off the read-ahead option under the PCM 
swap system where the page fault handling time is 
significantly small. Third, we show that the performance 
is not degraded even with a small DRAM memory size 
under a PCM swap device; this leads to the reduction of 
DRAM’s energy consumption significantly compared to 
HDD-based swap systems.  

We expect that the result of this paper will lead to the 
transition of the legacy swap system structure of “large 
memory – slow swap” to a new paradigm of “small 
memory – fast swap.” 

The remainder of this paper is organized as follows. 
Section II briefly describes the motivation of this 
research. Section III shows the results of experiments 
performed in this paper and analyzes them. Section IV 
summarizes researches related to this study. Finally, 
Section V concludes this paper. 

II. MOTIVATIONS 

In this section, we perform motivational experiments 
to analyze the effectiveness of PCM-based swap systems. 
The experiments were conducted with the virtual 
memory access trace of four Linux applications, namely 
freecell, gqview, kghostview, and xmms. (Details of the 
workload characteristics will be described in Section III.) 
For a comparison purpose, we also measure the 
performance of HDD-based swap systems as well as that 
of the PCM-based swap system.   
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Fig. 1. Different memory architecture with PCM 
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Fig. 2 shows the total elapsed time of each workload 
as the page size of the target system is varied. For 
readers’ convenience, we use different scales for PCM 
and HDD in the y-axis. 

As shown in the figure, the performance of the PCM-
based swap system is improved significantly as the page 
size becomes smaller in all cases. This result is obviously 
different from the HDD-based swap system case, in 
which the best performance is obtained when the page 
size is 4 KB or more. This indicates that the page size of 
4 KB, which is most commonly used in modern 
computer systems, is not efficient for the PCM-based 
swap system.  

However, reducing the page size is not a simple issue 
since the number of page table entries should be 
increased as the page size shrinks. This would eventually 
increase the memory requirement for the page table 
dramatically. However, it is likely that the total main 
memory capacity can be reduced when a small page size 
is used because a variety of contents can be 
accommodated even with a small DRAM capacity, and 
the page fault handling time is fast enough under the 
PCM storage. Therefore, we argue that the space 
overhead of the page table can be relieved by shrinking 
the total DRAM size of the system. Through our 
experiments, we show that our system consisting of small 

memory and fast swap storage exhibits competitive 
performance and is also energy-efficient. 

III. PERFORMANCE EVALUATIONS  

In this section, we perform various experiments to find 
efficient management techniques for PCM-based swap 
systems.  

 
1. Experiment Setup 

 
Traces used in our experiments were extracted by the 

Cachegrind tools of Valgrind 3.2.3 [23]. We capture the 
virtual memory access traces from four applications used 
on Linux Xwindows, namely, the freecell game, the 
kghostview PDF file viewer, the gqview image editing 
program, and the xmms music player. We filter out 
memory references that are accessed directly from the 
CPU cache memory and also reflect the write-back 
property of the cache memory. The characteristics of 
these traces are described in Table 1. 

With these traces, we perform simulation experiments 
to evaluate the performance of PCM-based swap systems. 
We assume that PCM is put on DIMM slots and there is 
no context switch while handling page faults. In the 
simulation, the size of DRAM memory is varied from 
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                          (a) freecell                                  (b) gqview 
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                         (c) kghostview                                (d) xmms 

Fig. 2. Total elapsed time of HDD and PCM swap systems as a function of the page size 
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5% to 100% of the total memory footprint of each 
workload. The DRAM size of 100% implies the infinite 
memory capacity where all pages referenced in the trace 
can be loaded simultaneously, and thus replacement is 
not needed. This is an unrealistic condition but presented 
to show the complete performance trend while varying 
the memory size. The page size is also varied from 512 
bytes to 128 KB. We use 512 bytes as the minimum page 
size because the page size cannot be smaller than the 
cache block size managed in the last-level cache (LLC). 
The CLOCK algorithm, which is widely used in virtual 
memory systems, is adopted as a baseline page 
replacement algorithm in our experiments [7].  

The access time of a PCM device is composed of 
TACCESS and TTRANSFER, where TACCESS is a static time 
component needed for each independent access and 
TTRANSFER is a time component proportional to the request 
size. In our experiments, we set the values modeled in 
the previous study [24]. Suppose that the proportional 
time component of a write operation is TTRANSFER_write, that 
of a read operation is TTRANSFER_read, and the size 
independent time component of read and write operations 
is TACCESS_read and TACCESS_write, respectively. When the 
total number of read operations is Nread, the total number 
of write operations is Nwrite, and the page size is SIZEp, 
then the PCM access time by each request TEACH and the 
total elapsed time TTOTAL can be calculated as follows.  

 
TEACH = TACCESS + TTRANSFER  
TTOTAL  = Nread (TACCESS_read + TTRANSFER_read * SIZEp)  
        + Nwrite (TACCESS_write + TTRANSFER_write * SIZEp) 
 

2. Effects of the Page Size 
 
Fig. 3 shows the total elapsed time of each workload 

as a function of the page size. For each configuration, we 
also vary the DRAM memory size from 5% to 100% of 
the footprint of each workload. As shown in the figure, 

the total elapsed time is improved as the page size 
becomes smaller in all cases. This is because only the 
necessary part to execute the program is loaded into 
memory. Note that a hard disk drive has a significant 
portion of size-independent time component to access 
data, whereas PCM does not do so, and thus the transfer 
size is critical to PCM performances. As we eliminate the 
software I/O stack overhead and the context switch 
overhead from the page fault handling process, reducing 
the transfer size is important in minimizing the total cost 
of a page fault. When the page size is reduced from 4KB 
to 512 bytes, the performance is improved by 58.9% on 
average. 

  
3. Effects of Read-ahead 

 
Modern operating systems such as Linux use a read-

ahead technique that loads several adjacent pages as well 
as the requested page itself when a page fault occurs. 
This is effective in disk storage systems to minimize the 
head movement as storage accesses frequently exhibit 
sequential behavior. In this section, we analyze the 
effectiveness of read-ahead on the performance of PCM-
based swap systems.  

Fig. 4 shows the total elapsed time of each workload 
as the read-ahead window size is varied. In this 
experiment, the page size is set to 512 bytes based on the 
result of Section III-2. The total memory size is set to 
10% of the memory footprint for each workload. As 
shown in Fig. 4, the performance is improved 
significantly when the read-ahead option is turned off. 
Specifically, the total elapsed time is improved by 51.6% 
on average and up to 80.7% when the read-ahead option 
is turned off, in comparison with the read-ahead window 
size of 8. This is because the cost of loading unnecessary 
pages through read-ahead degrades the performance of 
PCM-based swap systems significantly.  

 

Table 1. Memory usage and reference count for each workload. 

memory access count 
workload memory usage   

(KB) ratio of operations 
total instruction read data read data write 

xmms 8,050 reads : writes = 1 : 5.13 1,168,939 65,048 125,649 978,242 
gqview 7,430 reads : writes = 1 : 1.30 610,685 93,242 172,044 345,399 
freecell 10,080 reads : writes = 7.16 :1 490,175 114,233 315,902 60,040 

kghostview 17,390 reads : writes = 13.93 : 1 1,546,135 380,609 1,061,986 103,540 
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4. Effects of Page Replacement Algorithms 
 
In this section, we assess the effects of page 

replacement algorithms in PCM-based swap systems. 

CLOCK is a representative replacement algorithm for 
virtual memory systems [7]. To support the replacement 
algorithm in modern computer systems, a reference bit 
and a dirty bit are provided for each memory page that 
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Fig. 3. Total elapsed time of each workload as the page size of PCM swap systems is varied 
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Fig. 4. Total elapsed time of each workload as a function of the read-ahead window size 
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are set by the paging unit hardware. Specifically, on a hit 
to a page, the paging unit hardware sets the reference bit 
of the page to 1 when a read or a write reference for that 
page occurs, and sets the dirty bit to 1 when a write 
reference occurs. Then, pages are maintained in a 
circular list. Whenever free page frames are needed, 
CLOCK sequentially scans through the pages in the 
circular list, starting from the current position, that is, the 
position next to the last evicted page. This scan continues 
until a page with a reference bit of zero is found, and that 
page is then replaced. If the dirty bit of the victim page is 
set to 1, the page is written back to swap storage since it 
has been modified while resident in memory. In the 
course of the scan, for every page with the reference bit 
of 1, CLOCK clears it to 0, without removing the page 
from memory. The reference bit of each page is an 
indication of whether that page has recently been 
accessed or not; and pages not referenced upon the return 
of the clock-hand to that page will be replaced. 

Though CLOCK estimates future page accesses by 
considering the recency of references, it does not have 
the ability to predict future write accesses. Though 
CLOCK uses the dirty bit, this bit simply indicates that 
the page was written at least once while resident in 
memory. There is no way to convey the information that 

the page has been recently written or not. Since a write 
operation of PCM is significantly slower than a read 
operation, it is necessary to predict future write accesses 
and maintain pages likely to be written again in memory. 

To this end, we devise a new algorithm CLOCK-W, 
by simply changing the original CLOCK algorithm such 
that the dirty bit is used to capture the recency of write 
references for page replacement instead of the reference 
bit. Specifically, CLOCK-W checks the dirty bit of the 
page to which the clock-hand points. If the dirty bit is 1, 
CLOCK-W clears the dirty bit and backs it up to a kernel 
variable in the page structure. By so doing, OS still 
knows that it is a dirty page that should be written back 
to storage when selected as an eviction victim. If a page 
with the dirty bit of zero is found, that page is replaced 
since it is not a recently written page. 

Fig. 5 shows the total elapsed time of CLOCK and 
CLOCK-W as a function of the DRAM memory size. In 
the figure, 100% memory size is an unrealistic condition 
where the complete memory footprint can be loaded at 
the same time, not incurring any page replacement. In 
this case, the two algorithms perform the same. As 
shown in the figure, CLOCK-W performs slightly better 
than original CLOCK for call cases, even though it does 
not consider the recency of read references. This is 
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Fig. 5. Total elapsed time of each workload as a function of the DRAM memory size 
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because the cost of a write operation is even larger than 
that of a read operation in PCM.  

Though the performance of CLOCK-W is not much 
better than CLOCK in our simple experiments, we can 
state that the design of an efficient replacement algorithm 
for the PCM-based swap system is needed to consider the 
re-reference likelihood of write operations.  

 
5. Effects of Reducing DRAM Memory Size 

 
The energy consumption of DRAM memory is 

becoming a dominant portion of the total system energy 
due to the increasing memory capacity driven by 
memory-intensive applications and multi-core processors. 
In this section, we investigate the effects of reducing the 
DRAM memory size when PCM-based swap storage is 
adopted. Regarding the performance aspect, we have 
already seen in Fig. 3 that a reasonably good 
performance can be obtained even with the 10% DRAM 
size of the total footprint when we use the page size of 
512 bytes.  

Fig. 6 shows the total energy consumption of PCM-
based swap systems with the 10% DRAM size in 
comparison with the disk-based conventional swap 
system with the 100% DRAM size. As shown in the 
figure, the PCM-based swap system consumes 88.1% 
less energy than the HDD-based swap system. This result 
indicates that the new swap architecture of “small 
memory – fast swap” will be effective in reducing the 
energy consumption of future computer systems. 

IV. RELATED WORK 

Studies on adopting PCM in the memory hierarchy of 

computer systems have focused on enhancing the write 
performance and endurance of PCM. There are three 
categories of research that aims at achieving these goals. 

The first category uses a certain amount of DRAM to 
reduce the number of writes that occurs on PCM [1, 5]. 
Dhiman et al. present a hybrid PCM and DRAM memory 
architecture called PDRAM [5]. They focus on balancing 
the write count of PCM by moving data located at a PCM 
page to a DRAM page if the write count of the PCM 
page becomes large. However, they do not consider the 
placement or replacement issues. Qureshi et al. present 
an architecture that uses DRAM as the last level cache 
memory of PCM main memory [1]. This architecture 
caches both clean and dirty pages in DRAM cache. Zhou 
et al. present cache partitioning and replacement 
algorithms under this architecture [15]. Their algorithms 
aim at reducing the cache miss ratio as well as 
writebacks from the DRAM cache. They also consider 
the balance of PCM write queues in the design of 
replacement algorithms. Seok et al. predicts page access 
patterns and tries to migrate read-intensive pages to PCM 
and write-intensive pages to DRAM [16]. For prediction 
of read and write access patterns, they calculate the 
weighting value using the ratio of writes to total 
references. One problem with this scheme is that the 
algorithm requires exact time information for every 
memory reference, which is difficult to be implemented 
in virtual memory systems.  

The second category is to reduce the number of PCM 
writes by programming only the cells whose contents 
have been changed. This technique could enhance the 
endurance of PCM but it accompanies comparison 
overhead. Qureshi et al. present the line-level write-back 
(LLWB) technique that writes only dirty cache lines 
within a PCM page [1]. A similar technique is also 
presented by Lee et al. [11]. These two techniques use a 
dirty bit within each cache line that retains whether the 
cache line is modified or not. Yang et al. present the data 
comparison write that compares each bit in a PCM page 
and then writes only modified bits [12]. Similar work is 
also performed by Zhou et al. [9]. Cho and Lee present 
the flip-n-write technique, which flips all bits in a page if 
it incurs less number of bit writes [13]. Wongchaowart et 
al. present a content-aware block placement algorithm 
that selects a free block with similar contents among 
those in the free block lists [14]. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

freecell gqview kghostview xmms

E
ne

rg
y 

C
on

su
m

pt
io

n 
(n

om
al

iz
ed

) 

Workload 

PCM-based swap systems HDD-based swap systems

 

Fig. 6. Comparison of total energy consumption 
 

 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.5, OCTOBER, 2015 483 

 

The third category is the wear-leveling technique to 
evenly distribute PCM writes. Coarse-grained and fine-
grained wear-leveling techniques have been separately 
studied. For coarse-grained wear-leveling, Zhou et al. 
present the segment swapping technique that swaps old 
and young pages periodically [9]. Seong et al. present the 
security refresh technique that prevents wear-out from 
malicious attackers by constantly migrating physical 
locations inside the PCM, obfuscating the actual data 
placement from users and system software [10].  

For fine-grained wear-leveling, Zhou et al. present the 
row shifting technique, which shifts the position of bits in 
a page in order to balance the number of bit writes within a 
page [9]. Qureshi et al. present a similar technique called 
FGWL (fine grained wear-leveling) that stores the lines of 
each page in PCM in a rotated manner [1].  

Wear-leveling techniques given above are table-based 
translation schemes that require tables to track write 
counts and to perform logical to physical address 
mappings. To obviate overhead that comes from table-
based translation, Qureshi et al. propose the Start-Gap 
wear-leveling method by using an algebraic mapping 
between physical and logical addresses [17]. Without 
table structures, Start-Gap uses just two registers, named 
Start and Gap, to perform wear-leveling and still 
achieves good PCM lifetime. 

V. CONCLUSION 

In this paper, we explored the empirical characteristics 
of PCM-based swap systems and showed how this 
system can be managed efficiently. Specifically, we 
demonstrated that reducing the page size and turning off 
the read-ahead option are effective in the PCM-based 
swap system as the page fault handling time is 
significantly small. We also showed that the performance 
is not degraded but the DRAM’s energy consumption 
can be reduced significantly when we use only a small 
amount of DRAM memory. We expect that the result of 
this paper will lead to the transition of the legacy swap 
system structure of “large memory – slow swap” to a 
new paradigm of “small memory – fast swap” in the 
future. 
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