DOI QR코드

DOI QR Code

Au 나노입자가 코팅된 TiO2 나노와이어의 에탄올가스 검출 특성

Ethanol Sensing Properties of TiO2 Nanowires Sensor Decorated with Au Nanoparticles

  • 강우승 (인하공업전문대학 금속재료과)
  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 투고 : 2015.10.07
  • 심사 : 2015.10.20
  • 발행 : 2015.10.31

초록

$TiO_2$ nanowires were synthesized by hydrothermal method for the application to ethanol gas sensor. $TiO_2$ nanowires were decorated with Au nanoparticles to improve the sensitivity to ethanol gas. Scanning electron microscopy and Transmission electron microscopy revealed that the synthesized nanowires had diameters and lengths of approximately 100 - 200 nm and a few micrometers, respectively. Size of the Au nanoparticles decorated on the $TiO_2$ nanowires was observed to be in the range of 10 - 20 nm. X-ray diffraction confirmed that the decorated nanowires were composed of anatase-, rutile-$TiO_2$, and Au. The sensitivities of $TiO_2$ nanowires sensors decorated with Au were approximately 1.1 - 3.65 times as high as those of as-synthesized $TiO_2$ sensors for the ethanol concentration of 5 - 100 ppm at $200^{\circ}C$. The mechanism of the improved ethanol gas sensing of the $TiO_2$ nanowires decorated with Au nanoparticles is discussed.

키워드

참고문헌

  1. J. B. K. Law, and J. T. L Tong, Nanotechnol. 19 (2008) 205502. https://doi.org/10.1088/0957-4484/19/20/205502
  2. D. Manno, G. Micocci, R. Rella, A. Serra, A. Taurino, and A,Tepore, J. Appl. Phys. 82 (1997) 54. https://doi.org/10.1063/1.365848
  3. M. C. McAlpine, H. Ahmad, D. Wang, and J.R. Heath, Nature Mater. 6 (2007) 379. https://doi.org/10.1038/nmat1891
  4. E. N. Dattoli, A. V. Davydov, and K. D. Benkstein, Nanoscale 4 (2012) 1760. https://doi.org/10.1039/c2nr11885h
  5. E. Brunet, T. Maier, G. C. Mutinati, S. Steinhauer, A. Kock, C. Gspan, and W. Grogger, Sens. Actuators B: Chemical 165 (2012) 110.
  6. M.M. Rahman, A. Jamal, S.B. Khan, and M. Faisal, J. Phys. Chem. C 115 (2011) 9503. https://doi.org/10.1021/jp202252j
  7. Y. Li, J. Xu, J. Chao, D. Chen, S. Ouyang, J. Ye, and G. Shen, J. Mater. Chem. 21 (2011) 12852. https://doi.org/10.1039/c1jm11356a
  8. Y.J. Li, K.M. Li, C.Y. Wang, C.I. Kuo, and L.J. Chen, Sens. Actuators B: Chem 161 (2012) 734. https://doi.org/10.1016/j.snb.2011.11.024
  9. I.S. Hwang, J.K. Choi, H.S. Woo, S>J. Kim, S.Y. Jung, T.Y. Seong, I.D. Kim. and J.H. Lee, ACS Appl. Mater. Interfaces 3 (2011) 3140. https://doi.org/10.1021/am200647f
  10. M. Ahsan, M.Z. Ahmad, T. Tesfamichael, J. Bell, W. Wlodarski, and N. Motta, Sens. Actuators B: Chemical 173 (2012) 789. https://doi.org/10.1016/j.snb.2012.07.108
  11. L. Shi, and H. Lin, Langmuir 27 (2011) 3977. https://doi.org/10.1021/la104529h
  12. J. Pan, R. Ganesan, H. Shen, and S. Mathur, J. Phys. Chem. C 114 (2010) 8245. https://doi.org/10.1021/jp101072f
  13. X. Ma, Y. Wu, Y. Lu, J. Xu, Y. Wang, and Y. Zhu, J. Phys. Chem. C 115 (2011) 16963. https://doi.org/10.1021/jp202750w
  14. P.P. Boix, G. Laramona, A. Jacob, B. Delatouche, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. C 116 (2012) 1579.
  15. P. Si, S. Ding, J. Yuan, X.W. Lou, and D.H. Kim, ACS Nano 5 (2011) 7617. https://doi.org/10.1021/nn202714c
  16. Z. Lou, F. Li, J. Deng, L.L. Wang, and T. Zhang, ACS Appl. Mater. Interfaces 5 (2013) 12310. https://doi.org/10.1021/am402532v
  17. S. Lee, I.S. Cho, J.H. Lee, D.H. Kim, D.W. Kim, J.Y. Kim, H. Shin, J.K. Lee, H.S. Jung, N.G. Park, K. Kim, M.J. Ko, and K.S. Hong, Chem. Mater. 22 (2010) 1958. https://doi.org/10.1021/cm902842k
  18. T. Krishnamoorthy, V. Thavasi, M. Subodh G, and S. Ramakrishna, Energy Environ. Sci. 4 (2011) 2807. https://doi.org/10.1039/c1ee01315g
  19. W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, and D.B. Kuang, Sci. Report 3 (2013) 1352. https://doi.org/10.1038/srep01352
  20. M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, Nano Lett. 12 (2012) 1503. https://doi.org/10.1021/nl2042968
  21. H. Wender, A.F. Feil, L.B. Diaz, C.S. Ribeiro, G.J. Machado, P. Migowski, D.E. Weibel, J. Dupont, and S.R. Teixeira, 3 (2011) 1359. https://doi.org/10.1021/am200156d
  22. Y. Paska, T. Stelzner, S. Christiansen, and H. Haick, ACS Nano 5 (2011) 5620. https://doi.org/10.1021/nn201184c
  23. B. Wang, H. Haick, ACS Appl. Mater. Interfaces 5 (2013) 5748. https://doi.org/10.1021/am401265z
  24. C. Wongchoosuk, K. Subannajui, C. Wang, Y. Yang, F. Guder, T. Kerdcharoen, V. Cimalla, and M. Zacharias, RSC Adv. 4 (2014) 35048. https://doi.org/10.1039/C4RA04178J
  25. X. Zou, J. Wang, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J.C. Ho, J. Li, C. Jiang, Y. Fang, W. Liu, and L. Liao, Nano Lett. 13 (2013) 3287. https://doi.org/10.1021/nl401498t
  26. G. Zhu, H. Xu, Y. Liu, X. Xu, Z. Ji, X. Shen, and Z. Xu, Sens. Actuators B: Chemical 166-167 (2012) 36. https://doi.org/10.1016/j.snb.2011.11.048
  27. X.H. Xia, J.P. Tu, Y.J. Mai, X.I. Wang, C.D. Gu, and X.B. Zhao, J. Mater. Chem. 21 (2011) 9319. https://doi.org/10.1039/c1jm10946d
  28. S. Park, S. Kim, S. Park, W.I. Lee, and C. Lee, Sensors 14 (2014) 15849. https://doi.org/10.3390/s140915849
  29. V. Galstyan, E. Comini, G. Faglia, A. Vomiero, L Borgese, E. Bontempi, and G. Sberveglieri, Nanotechnol. 23 (2012) 235706. https://doi.org/10.1088/0957-4484/23/23/235706
  30. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, and S. Chen, ACS Appl. Mater. Interfaces 2 (2010) 3263. https://doi.org/10.1021/am100707h