DOI QR코드

DOI QR Code

Distribution of Soil Fertility in Paddy Fields as Affected by Cultivation Methods and Topographical Regions

경작지대 및 재배방법에 따른 논토양의 비옥도 분포

  • 김동진 (전북대학교 대학원 농화학과) ;
  • 강다슬 (전북대학교 대학원 농화학과) ;
  • 안병구 (전라북도농업기술원 기후변화대응과) ;
  • 이진호 (전북대학교 생물환경화학과)
  • Received : 2015.09.02
  • Accepted : 2015.09.14
  • Published : 2015.09.30

Abstract

Soil chemical properties in paddy fields were found to be varied depending upon different cultivation methods such as environmentally-friendly, conventional, and two-crop farming systems and different topographical regions, namely plain, middle mountainous, and reclaimed land regions. Overall soil pH was found to be in optimal range (pH 5.5~6.5) for rice cultivation, except with conventional cultivation fields of the reclaimed lands in Jeonnam province. Electrical conductivity (EC) was relatively higher in the two-crop cultivation fields than in others. However, the concentrations of available phosphate as $P_2O_5$ were exceptionally higher in the two-crop farming fields, thus in submerged paddy condition the phosphate could be released into streams and rivers. Soil organic matter (SOM) contents were mostly in optimal range ($25{\sim}30g\;kg^{-1}$) for paddy field in Jeonbuk province, but in Jeonnam province they were slightly higher values of the range. The concentrations of available silicate ($SiO_2$) were mostly depended on the cultivation methods and the region, but some of paddy fields contained extremely high $SiO_2$ concentration. Statistical relationships among the soil chemical properties showed as follows: Correlations between EC values and exchangeable cation concentrations, between SOM contents and CEC values, and between available $SiO_2$ concentrations and pH, EC, exchangeable cations, and CEC values were positively significant, whereas total nitrogen concentrations were significantly negatively correlated with the concentrations of exchangeable K and Mg. These results might be very useful to establish benchmark paddy fields contained with certain levels of soil fertility.

논토양의 화학적 특성은 경작지대 및 재배방법에 따라 차이가 나타났다. 토양 pH는 전라남도 간척지의 관행재배지를 제외하고 대체적으로 적정기준(pH 5.5~6.5) 범위로 나타났다. EC는 이모작재배지에서 다소 높게 나타나긴 하였으나 우려할 수준은 아니었고, 이모작재배지에서 유효인산(avail. $P_2O_5$) 함량이 매우 높게 나타나 담수상태에서 유효인산의 하천 유출로 인한 2차 오염이 우려된다. 토양유기물(SOM) 함량은 전라북도 지역 논토양에서는 대체적으로 적정기준 ($25{\sim}30g\;kg^{-1}$) 보다 낮게 나타났으나, 전라남도 지역 논토양은 적정범위 이거나 초과하는 것으로 나타났다. CEC는 일부 재배지를 제외하고는 적정기준($10{\sim}15cmol_c\;kg^{-1}$) 범위로 나타났고, 유효규산 (avail. $SiO_2$) 함량은 적정기준($157{\sim}180mg\;kg^{-1}$)보다 매우 높게 나타나는 경우도 있었으나, 대체로 경작 지대 및 재배방법에 따라 특이적 함량차이가 나타났다. 토양 화학성 상관성 분석에서 EC와 치환성 K, Ca, Mg, Na 이온은 유의성 있는 정의 상관관계로 나타났다. SOM 함량과 CEC는 유의성 있는 정의상관관계가 나타났고,avail. $SiO_2$는 pH, EC, 치환성 양이온(exch. K, Ca, Mg, Na), CEC와 유의성 있는 정의 상관관계를 보였다. 그러나 T-N은 치환성 K 및 Mg 이온과는 유의한 부의 상관관계를 나타내었다. 이러한 결과를 토대로 비옥도의 기준이 되는 대표적인 논토양을 설정하는데 귀중한 자료가 될 것으로 판단된다.

Keywords

References

  1. Ahn, B. K., J. H. Lee, K. C. Kim, H. G. Kim, S. S. Jeong, H. W. Jeon, and Y. S. Zhang. 2012. Changes in chemical properties of paddy field soils as influenced by regional topography in Jeonbuk province. Korean J. Soil Sci. Fert. 45(3): 393-398. https://doi.org/10.7745/KJSSF.2012.45.3.393
  2. Cho, J. Y., K. W. Han, J. K. Choi, Y. J. Kim, and K. S. Yoon. 2002. N and P losses from a paddy field plot in central Korea. Soil Sci. Plant Nutr. 48: 301-306. https://doi.org/10.1080/00380768.2002.10409205
  3. EEA (European Environment Agency). 2001. European soil monitoring and assessment framework. EIONET workshop proceedings. Copenhagen, Denmark.
  4. Eom, K. C., S. H. Yun, S. W. Hwang, S. G. Yun, and D. S. Kim. 1993. Public benefit from paddy soil. Korean J. Soil Sci. Fert. 26(4): 314-333.
  5. Kang, B. G., S. Y. Lee, S. C. Lim, Y. S. Kim, S. D. Hong, K. Y. Chung, and D. Y. Chung. 2011. Establishment of application level for the proper use of organic materials as the carbonaceous amendments in the greenhous soil. Korean J. Soil Sci. Fert. 44(2): 248-255. https://doi.org/10.7745/KJSSF.2011.44.2.248
  6. Kang, S. S., A. S. Roh, S. C. Choi, Y. S. Kim, H. J. Kim, M. T. Choi, B. K. Ahn, H. W. Kim, H. K. Kim, J. H. Park, Y. H. Lee, S. H. Yang, J. S. Ryu, Y. S. Jang, M. S. Kim, Y. K. Sonn, C. H. Lee, S. G. Ha, D. B. Lee, and Y. H. Kim. 2012. Status and changes in chemical properties of paddy soil in Korea. Korean J. Soil Sci. Fert. 45(6): 968-972. https://doi.org/10.7745/KJSSF.2012.45.6.968
  7. Lee, Y. H., Y. K. Sonn, S. T. Lee, J. Y. Heo, M. K. Kim, E. S. Kim, W. D. Song, Y. S. Zhang, W. T. Jeon, and Y. S. Oh. 2012. Topographical chemical properties of paddy soils in Gyeongnam province. Korean J. Soil Sci. Fert. 45(2): 143-148. https://doi.org/10.7745/KJSSF.2012.45.2.143
  8. MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2014. Agricultur, Food and Rural statistical yearbook. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
  9. NAAS (National Academy of Agricultural Science). 2010. Fertilization standard on crops. National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea.
  10. NAAS (National Academy of Agricultural Science). 2010. Methods of soil chemical analysis. National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea.
  11. OECD (Organization for Economic Co-operation and Development). 2001. Environmental indicators for agriculture. Methods and results, Volume 3: 171-193. Organization for Economic Co-operation and Development, Paris, France.
  12. Peters, J. B. 2000. Gambian soil fertility trends, 1991-1998. Commun. Soil Sci. Plant Anal. 31: 2201-2210. https://doi.org/10.1080/00103620009370576
  13. RDA (Rural Development Administration). 2008. Monitoring project on agri-environment quality in Korea. One cycle project workshop. Rural Development Administration, Suwon, Korea.
  14. RDA (Rural Development Administration). 2012. 2011 annual report of the monitoring project on agro-environmental quality. Rural Development Administration, Suwon, Korea.
  15. Sharpley, A. N., J. L. Weld, D. B. Beegle, P. J. A. Kleinman, W. J. Gburek, P. A. Moore, Jr., and G. Mullings. 2003. Development of phosphorus indices for nutrient management plannings strategies in the United States. J. Soil Water Conserv. 58(3): 137-152.
  16. Sohn, B. K., J. S. Cho, J. G. Kang, J. Y. Cho, K. Y. Kim, H. W. Kim, and H. L. Kim. 1999. Physico-chemical properties of soils at red pepper, garlic and onion cultivation ares in Korea. Korean J. Soc. Soil Sci. Fert. 32: 123-131.
  17. Tang, J., B. Zhang, C. Gao, and H. Zeppa. 2008. Hydrological pathway and source area of nutrient losses idenfitied by a multi-scale monitoring in an agricultural catchment. Catena 72: 374-385. https://doi.org/10.1016/j.catena.2007.07.004
  18. Yoo, C. H., C. H. Yang, T. K. Kim, J. H. Ryu, J. H. Jung, S. W. Kang, J. D. Kim, and K. Y. Jung. 2007. Physico-chemical properties of paddy soil and actual farming conditions in Gyehwa reclaimed tidal land. Korean J. Soil Sci. Fert. 40(2): 109-113.
  19. Yoon, J. H., I. Y. Kim, P. K. Jung, J. S. Suh, and H. J. Jun. 2002. Development of soil quality indicator, 240-258. Research Report of Dept. of Agricultural Environment, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.