DOI QR코드

DOI QR Code

Image Segmentation of Adjoining Pigs Using Spatio-Temporal Information

시공간 정보를 이용한 근접 돼지의 영상 분할

  • 사재원 (고려대학교 컴퓨터정보학과) ;
  • 한승엽 (고려대학교 컴퓨터정보학과) ;
  • 이상진 (고려대학교 컴퓨터정보학과) ;
  • 김희곤 (고려대학교 컴퓨터정보학과) ;
  • 이성주 (고려대학교 컴퓨터정보학과) ;
  • 정용화 (고려대학교 컴퓨터정보학과) ;
  • 박대희 (고려대학교 컴퓨터정보학과)
  • Received : 2015.07.03
  • Accepted : 2015.08.11
  • Published : 2015.10.31

Abstract

Recently, automatic video monitoring of individual pigs is emerging as an important issue in the management of group-housed pigs. Although a rich variety of studies have been reported on video monitoring techniques in intensive pig farming, it still requires further elaboration. In particular, when there exist adjoining pigs in a crowd pig room, it is necessary to have a way of separating adjoining pigs from the perspective of an image processing technique. In this paper, we propose an efficient image segmentation solution using both spatio-temporal information and region growing method for the identification of individual pigs in video surveillance systems. The experimental results with the videos obtained from a pig farm located in Sejong illustrated the efficiency of the proposed method.

최근, 축산 농가에서 돈사 내 개별 돼지들의 자동 영상 모니터링 기법이 중요한 이슈로 떠오르고 있다. 현재까지 이를 위한 다양한 연구들이 소개되어 왔지만, 아직도 추가적인 연구 노력이 요구된다. 특히, 혼잡한 돈방에서 움직이는 근접한 돼지들의 객체 식별을 위한 연구가 영상처리 분야 입장에서 요구된다. 본 논문에서는 감시카메라 환경에서 움직이는 근접한 돼지들의 객체 식별을 위한 해법으로써 시공간 정보와 영역 확장 기법을 이용한 효율적인 영상 분할 방법론을 새롭게 제안한다. 실제로 세종에 위치한 한 돈사에서 취득한 영상 정보를 이용하여 본 논문에서 제안한 시스템의 성능을 실험적으로 검증하였다.

Keywords

References

  1. D. Berckmans, "Automatic on-line monitoring of animals by precision livestock farming," Animal Production in Europe: The Way Forward in an Changing World, in Between Congress of the ISAH, Vol.1, pp.27-30, 2004.
  2. T. Banhazi, H. Lehr, J. Black, H. Crabtree, P. Schofield, M. Tscharke, and D. Berckmans, "Precision Livestock Farming: an International Review of Scientific and Commercial Aspects," International Journal of Agricultural and Biological Engineering, Vol.5, No.3, pp.1-9, 2012.
  3. Y. Chung, H. Kim, H. Lee, D. Park, T. Jeon, and H. Chang, "A Cost-Effective Pigsty Monitoring System based on a Video Sensor," TIIS, Vol.8, No.4, pp.1481-1498, 2014. https://doi.org/10.3837/tiis.2014.04.018
  4. B. Shao and H. Xin, "A real-time computer vision assessment and control of thermal comfort for group-housed pigs," Computers and Electronics in Agriculture, Vol.62, pp.15-21, 2008. https://doi.org/10.1016/j.compag.2007.09.006
  5. L. Jin, S. Zuo, J. Lee, D. Park, and Y. Chung, "Aggressive Behavior Detection of Weaning Pigs," in Proceeding of the KSII Fall Conference, Seoul, pp.325-326, 2014.
  6. S. Zuo, L. Jin, Y. Chung, and D. Park, "An Index Algorithm for Tracking Pigs in Pigsty," in Proceeding of ICITMS, 2014.
  7. R. Haralick and L. Shapiro, "Survey: Image Segmentation Techniques," Computer Vision, Graphics, and Image Processing, Vol.29, 1985.
  8. T. Yoo, Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis, AK Peters Ltd, 2004.
  9. J. Navarro-Jover, M. Alcaniz-Raya, V. Gomez, S. Balasch, J. Moreno, V. Grau-Colomer, and A. Torres, "An automatic colour-based computer vision algorithm for tracking the position of piglets," Spanish Journal of Agricultural Research, Vol.7, No.3, pp.535-549, 2009. https://doi.org/10.5424/sjar/2009073-438
  10. M. Kashiha, C. Bahr, S. Ott, C. Moons, T. Niewold, F. Odberg, and D. Berckmans, "Automatic identification of marked pigs in a pen using image pattern recognition," Computers and Electronics in Agriculture, Vol.93, pp.111-120, 2013. https://doi.org/10.1016/j.compag.2013.01.013
  11. I. Haritaoglu, D. Harwood, and L. Davis, "W4: Real-Time Surveillance of People and Their Activities," IEEE PAMI, Vol.22, No.8, pp.809-830, 2000. https://doi.org/10.1109/34.868683
  12. N. McFarlane and C. Schofield, "Segmentation and Tracking of Piglets in Images," Machine Vision and Applications, Vol.8, pp.187-193, 1995. https://doi.org/10.1007/BF01215814
  13. P. Geetha, R. Nidhya, A Kumar, and K. Selvi, "Cell segmentation and NC ratio analysis for biopsy images using marker controlled watershed algorithm," in Proceeding of ICGCCEE, pp.1-5, 2014.
  14. L. Vicent and P. Soille, "Watershed in Digital Space: An Efficient Algorithm based on Immersion Simulation," IEEE PAMI, Vol.13, No.6, pp.583-598, 1991. https://doi.org/10.1109/34.87344
  15. S. Beucher, "The Watershed Transformation applied to Image Segmentation," Scanning Microscopy-Supplement, pp.299-314, 1992.
  16. OpenCV [Internet], http://docs.opencv.org.

Cited by

  1. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs vol.217, 2016, https://doi.org/10.1016/j.tvjl.2016.09.005