
Journal of Internet Computing and Services(JICS) 2015. Oct.: 16(5): 49-57 49

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인
온라인 소 트웨어 서비스

☆

An Efficient On-line Software Service based on Application Customized
Graphic Offloading Library

최 원 혁1* 김 원 영1

WonHyuk Choi Won-Young Kim

요 약

본 논문에서는 응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스에 하여 소개한다. 그래
픽 분할 실행을 이용한 소 트웨어 서비스는 클라이언트 더링을 통하여 3D 그래픽 소 트웨어와 같은 고사양의 소 트웨어를 서
버 기반의 온라인 소 트웨어 서비스로 제공할 수 있다. 그래픽 분할 실행은 서버에서 소 트웨어가 실행될 때, 그래픽 련된 작업
은 클라이언트의 GPU를 이용하여 처리하고, 데이터 련 작업은 서버의 CPU를 이용하여 처리하는 방식이다. 그래픽 분할 실행 소
트웨어 서비스의 성능을 향상시키기 하여, 비동기 송 채 을 추가하고, 최 화 된 소 트웨어 공통 모듈과 소 트웨어 맞춤형
모듈을 기존의 그래픽 분할 실행 엔진에 추가한다. 이를 하여, 본 논문에서는 그래픽 련 API와 메시지들을 분석하여 소 트웨어
맞춤형 모듈을 구 하고, 서버 사이드 캐싱 방법을 통하여 최 화된 소 트웨어 공통 모듈을 구 하는 방법에 하여 기술한다. 마지
막으로, 성능 비교 실험을 통하여 개선된 분할 실행 엔진이 더 나은 성능을 가짐을 보여 다.

☞ 주제어 : 그래픽 분할 실행, 응용 맞춤형 라이 러리, 소 트웨어 서비스

ABSTRACT

In this Paper, we introduce an efficient on-line software service using an application customized graphic offloading library. The

software service based on graphic offloading provides high-end software, like a 3D graphic design tool, as an on-line software service

through using a client graphic rendering. When software is executed on server, its graphic works are handled by a client’s GPU, while

its data works are handled by a server’s CPU. To improve the performance, we apply an asynchronous transmission channel scheme

to our developed basic graphic offloading engine. Also, we add optimized common module and application specific module to our

engine. To do that, we introduce how to implement the application specific module using analyzing patterns of graphic related APIs

and messages that are generated by an executed software process. Also, we propose how to design the optimized common module

using server side information caching. Finally, through the performance comparison experiment, we show that improved offloading

engine has the better performance than old basic offloading engine.

☞ keyword : Graphic Offloading, Application Customized library, Software service

1. Introduction

Recently, the wide spread of cloud-client computing has

1
 Electronics and Telecommunications Research Institute,
218, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea

*
 Corresponding author (whchoi@etri.re.kr)

[Received 15 April 2015, Reviewed 22 April 2015, Accepted 10
August 2015]
☆ This work was supported by the Technology Innovation

Program [10035185, Development of a Separated Software
Execution Technology for Software Service] funded by the
Ministry of Knowledge Economy (MKE, Korea).

☆ A preliminary version of this paper was presented at ICONI
2014 and was selected as an outstanding paper.

changed a personal computing environment to a server-based

on-line computing based on virtualization technologies.

Server-based desktop virtualization technology provides

end-users with software service using virtual machine on

server. It is a solution for the problems, such as a data security

and a personal computer purchase and management cost

occurred in a personal computer based computing because of

managing user data and environments on the server, it can

improve end-user’s work efficiency to provide consistent

access regardless of the type of devices and the location and

time of end-users [1].

Technologies for supporting a server-based computing

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2015.16.5.49

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

50 2015. 10

include VMware Horizon[2], Citrix XenDesktop[3], Microsoft

Remote Desktop Service[4] and so on. These technologies

adopted the thin client technology[5] that a server executes

software and a client only serves as a terminal[6]. These lead

to problems of huge cost for buying and maintaining servers.

Also, the thin client technology is hard to serve high-end 3D

graphic software. For serving 3D graphic software, Xendesktop

supports to dedicate a graphic card to a virtual machine,

Microsoft Remote Desktop Service servers to share a high cost

GPU and VMware Horizon also needs high cost GPUs for

dedicating service or sharing service. These solutions have

problems to buy and manage GPUs and servers for expanding

service. Also, these cause to degrade the quality of service

according to the constraints of network bandwidth because that

compressed result images performed on the server transmit to

a client terminal [1].

However, with the recent development of manufacturing

technology of hardware, cheap high performance personal

computer is rapidly becoming widespread. Using this,

researches about client remote rendering have been actively

attempted. Client remote rendering is that client’s GPU

processes graphic works generated by executed software

process while 3D software is executed on the server. It can

take advantages of the thin client technology because of

executing and managing software on the server. It can handle

by splitting server’s huge loads to client terminal. Also, it can

provide a service with a relatively small bandwidth because

of processing and transferring graphic command and data.

To do that, we introduce a client-based remote 3D rendering

concept using graphic offloading[7] for server-based on-line

software service. We propose a window message virtualization

to provide a virtualized desktop window that the 2D window

created by offloading software is processed independently in

the server’s window management system. Finally, to improve

the performance of graphic offloading service, we suggest two

efficient schemes. We apply an asynchronous transmission

channel scheme to the graphic offloading server/client engine.

Alos, we add optimized common module and application

specific module to the graphic offloading server/client engine.

To do that, we show how to implement the application specific

module using analyzing patterns of graphic related APIs and

messages that are generated by executed software. Also, we

show how to design the optimized common module using a

server side caching technique, such as window Z-order

caching, window information caching and device context

caching. Finally, through the performance analysis, our

proposed optimized engine proves more efficient than the basic

offloading engine.

2. Remote Client Rendering

2.1 3D client rendering

Figure 1 describes the concept of a proposed 3D graphic

client rendering based on API remoting. When client requests

to execute DirectX-based 3D software, the application launcher

of the offloading server executes by binding the requested

application to the developed DirectX wrapper library instead

of the original DirectX library in the Windows OS. When the

executed process calls DirectX API, the developed wrapper

library is called and transmits the called API information and

parameters to the client via communication channel. The client

agent received API information calls the corresponding DirectX

API in the offloading client and then the rendering result is

displayed on the offloading client display device [8, 9].

(Figure 1) The concept of 3D graphic client

rendering using remote API call

2.2 2D client rendering based on

virtualizing desktop window

Figure 2 shows the interference effects between client

windows on the offloading server when requested applications

are executed by their own window on the same server. Our

proposed solution should be able to offload not only 3D graphic

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

한국 인터넷 정보학회 (16권5호) 51

API but also window and 2D GDI API on the offloading

client’s GPU. A window is the unit of application process that

has the message processing loop in the Windows OS. In case

of creating the corresponding windows on the offloading client

and server to serve window procedure when an offloading

application is executed on the offloading server, the

performance of an executed application, like a FPS, can be

affected because of the priority of an application window

created on the server system. Also, it can affect to the an

another application process behavior that connect to the same

offloading server due to window changing messages, such as

Focus Gain/Lost, Hide/Restore, Draw/Redrawing, Minimize/

Maximize and so on, occurred by created windows.

(Figure 2) The interference effects of client

windows on server

To resolve this problem, we propose a desktop window

virtualization that virtualizes a window created by the server

on the client system. To provide a desktop window virtualization,

we need two elements-an API remoting of window/GDI library

and a remote processing of window message.

(Figure 3) The concept of processing window

creation API

Figure 3 is the concept of remote executing for 2D GDI

and window related API call. Like the processing concept of

3D API, if the offloading software executed by server calls

CreateWindowEx API to create a window, then the server

hooks API call[10] and transfers API data to the client instead

of calling directly the own system library. Then, the client

calls CreateWindowEx API in the client system. At this time,

when the offloading server creates virtually a window, the

generated virtual handle is mapped to the real handle returned

by the client. Using this handle, GDI and DirectX API could

be rendered remotely[1].

(Figure 4) The sequence of handling window

message

Figure 4 is the representative sequence of handling window

message based on virtual window when offloading client

receives user inputs. The created window on the server only

has window procedure routine to process messages. The virtual

window created by the client also has a virtual window

procedure corresponding to that of the server. Using this virtual

window procedure, the offloading system processes messages

generated by user inputs[1].

3. Asynchronous Transmission

Channel

A commercial software occurs over 10,000 times graphics

processing function calls per frame. These frequent function

calls cause a performance degradation problem. For solving

this problem, we apply an asynchronous transmission channel

to the basic offloading engine middleware. Data transmission

channels of the basic offloading middleware is implemented

as independent send/receive channels per single thread. As

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

52 2015. 10

Figure 5, when the server-side send buffer of offloading

middleware is full or function which has return value is

executed, these command data are transmitted to offloading

client and are handled by offloading client.

In this paper, we add two concepts to data transmission

channel as follows.

Until the server-side send buffer is full, the offloading client

waits to receive data. It is one of important factors to degrade

the performance.Even if the server-side send buffer is not full,

the offloading server’s thread transfers buffer’s data to the

client. So, we can improve the performance of offloading

service because the offloading client can’t wait long in the

listening state.

(Figure 5) The structure of data transmission in

basic offloading system

Also, the offloading client executes the separately protocol

intepretation step and the function execution step on each

independent thread. By the way, one thread processes

interpretation jobs of received protocol messages, and the other

thread only executes a proper function corresponding to

interpreted result from interpretation thread.

(Figure 6) The structure of asynchronous

transmission channel

To do that, we implement an asynchronous transmission

channel and thread as Figure 6. A bi-way function command,

which has return value, is processed according to the original

step because it needs to reliable processing. But, because

one-way functions doesn’t need return value, these could be

frequently transmitted via an asynchronous channel. After the

offloading client receives and interprets these one-way

functions, it puts interpreted results in its own receive buffer.

Next, the command execution thread takes over those result

and calls proper functions[11].

4. Application Customized

Graphic Offloading Library

For all that we apply an asynchronous transmission channel

to offloading engine, the modified graphic offloading engine

includes following representative performance degradation

factors due to process remote API call as usual.

- The delay of message transfer between the offloading

server and client

- The delay of memory value transfer such as a bitmap

image processing

- Huge amount of message due to virtualize desktop

window(mouse moving, window ordering, etc.)

To solve these problems, we suggest the aplication

customized graphic offloading library.

4.1 The improving method of rendering

performance

In this section, we introduce three performance improvement

schemes through analyzing call patterns of APIs and messages

that generated by an offloading application process.

First, the offloading engine processes bi-way function as

one-way function. A bi-way function incurs execution delay

because it waits for the offloading client’s reply value that

corresponds to request by server’s graphic API call. To solve

this problem, when a bi-way function calls, the offloading client

engine responds an assumed value by analyzing sequences of

offloading application’s API call. The assumed response value

mustn’t incur side effects that cause a malfunction.

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

한국 인터넷 정보학회 (16권5호) 53

(Figure 7) The sequence of processing remote

function call with server cache

Second, the offloading server ignores API and message calls

that don’t affect application execution to the offloading client.

The GUI library, such as MFC, happens a lot of function and

message calls. Although some functions and messages, such

as mouse moving message, may be ignored, these don’t cause

any effect on the entire application execution.

Finally, the offloading server doesn’t send some frequent

query functions to the client and can handle those functions

using the server’s cache values that are already stored in the

server’s cache. Figure 7 is the sequence of processing remote

function call with server cache.

4.2 The construction of application

customized graphic offloading library

As Figure 8, the application customized graphic offloading

engine consists of basic offloading modules, optimized

common module and application specific modules.

(Figure 8) The construction of application

customized graphic offloading library module

The optimized common module is a set of handling routine

for common APIs and messages to improve the performance

of various applications. These APIs and messages are selected

from offloading modules, such as user32, GDI32, OpenGL and

DirectX library. The optimized common module is developed

by applying three performance improvement schemes

mentioned in section 4.1.

The application specific module, that could provide the

better performance to specific application, is designed by

analyzing API and message call patterns used in that

application. Three performance improvement schemes are also

applied to the application specific module. The application

specific module may be added in case that the rendering

performance of the application is important because it is not

always essential to serve the graphic offloading service.

4.3 The optimized common module

The optimized common module focuses features to improve

performance of rendering 2D graphic and window. To do that,

we apply server side caching scheme for three information to

the optimized common module. Three information are window

Z-order information, window attribute information and device

context attributes.

A window Z-order is an ordering of overlapping

two-dimensional windows on the Windows OS GUI. Creating,

moving, resizing and terminating window and changing

window’s focus happens many API calls related to the window

Z-order for rendering windows on the display. Depending on

the application, the number of API call associated with

querying the Z-order information may take up to 70 to 80%

of the entire number of API call generated by application

process. It may cause to decrease rendering performance when

running a graphic offloading application. To solve this

problem, the optimized common module utilize a portion of

the total offloading client’s Z-order information previously

stored in the offloading server-side cache to handle API calls

associated with querying Z-order information. This server-side

cache value is updated in case of exceeding a predetermined

time or calling an API to change Z-order information.

Window attribute information, that includes the status, size

and position of a window control, could be cached on the

offloading server because it is frequently queried and used

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

54 2015. 10

when an individual window is rendered.

Also, various attributes of device context, that include

background color, foreground color, text alignment, text color,

map mode, background mode, the current position of drawing

line and so on for rendering 2D graphic, could be cached on

the offloading server.

4.4 Application specific module

As Figure 9, the application specific module has the

interface of basic offloading modules and the optimized

common module.

The interface with basic offloading modules is Acceleration

interface which includes performance improvement features of

APIs and messages selected on basic offloading modules.

According to analyze API call patterns generated by a specific

offloading application, the selected API may be treated

differently than basic offloading API handling routine in order

to improve the performance of that application. To do that,

server-side application specific modules provide below

interface functions which are used by offloading server.

- typedef BOOL (*LPATTACHCB)(int id, int iCommand,

PVOID*, PVOID, LPCSTR);

- void RegisterAccelerators(LPATTACHCB lpAttachCb)

(Figure 9) Two Interface of application specific

module

The RegisterAccelerator function initializes server-side

application specific module and hooks functions to handle in

application specific module. The LPATTACHCB callback

function provides feature to substitute function of basic

offloading module with it of application specific module.

Functions, that are implemented in application specific module,

consist of functions applying to three features decribed in

section 4.1.

Client-side application specific modules provide below

function for interfacing with client-side basic offloading

modules.

- void RegisterAccelerators()

Likewise, the RegisterAccelerator function initializes

client-side application specific module and registers handler

functions which are handle API call requested by the

application specific server module.

Application specific module provides below function to

handle Windows OS messages for improving performance.

Likewise, basic offloading modules access these functions

through Acceleration interface.

- DoBeforeAddMessage(…): If this function returns true

value, message don’t be transmitted to offloading client

module and is processed by using predicted value or

stored value on server cache.

- DoAfterAddMessage(…): It transmits additional

information to client module or processes additional work.

- DoBeforeResolveMessage(…): It analyzes information

added by DoBeforeAddMessage function.

- DoBeforeResolveMessage(…): It analyzes information

added by DoAfterAddMessage function. If it needs, it can

invalidate value on the server cache.

The interface with optimized common module is Setup

interface which includes preference settings of performance

improvement features used by the optimized common module.

One feature is that selects applicability of performance

improvement features - Z-order caching, window information

caching and device context caching - on the optimized common

module of that application. The applicability of those features

is stored in the INI file. When offloading server engine is

started, it loads information in the INI file and then it will

apply selected features to offloading application service.

Figure 10 is a INI file example for Setup interface.

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

한국 인터넷 정보학회 (16권5호) 55

...
[accelerator]
zordercache=Y
wininfocache=N
dccache=Y
...

(Figure 10) INI file example for Setup interface

The other feature is the setting of size values related on

performance improvement features - Z-order caching size,

window information caching size and device context caching

size - on the optimized common module of that application.

Likewise, those values are stored in the INI file.

Experimentally, if window information caching size and device

context caching size is sufficiently set, it causes to improve

the performance of that application offloading service.

5. Performance Analysis

In this paper, to improve the performance of graphic

offloading engine, we applied an asynchronous transmission

channel scheme to the graphic offloading engine. Also, we

added optimized common module and application specific

module to the basic graphic offloading server and client

modules. We performed comparison tests divided two steps

in order to demonstrate the performance improvement effect

of our proposed features. First, we measured FPS(Frame Per

Second) of our offloading software service before and after

applying an asynchronous transmission channel to the

offloading engine. Next, we also measured FPS after applying

all performance improvement features.

Our test environment consists of two personal computers

based on Windows 7. The one is used as an offloading server

and the other is used as an offloading client. The server consists

of Intel XeonE5-2440 2.4 GHz CPU, 32G RAM. The client

consists of Intel(R) Core(TM) i3-3220 3.3GHz CPU and

NVIDIA GeForce GTX650 graphic card. The network

environment is a gigabit LAN. Because the graphic rendering

job of our solution is processed by an offloading client, the

graphic card’s specification of an offloading server is not

important. To measure the performance, we use two 3D graphic

softwares - Archispace LT and GPUBoids. Archispace LT is

a commercial architectural design tool. GPUBoids is a DirectX

10 sample program. The estimated result is follow Table 1.

(Table 1) Performance comparison test result

Archispace LT GPUBoids

Basic offloading

engine

6~7 30~33

Applying ATC1) 11~12 46~48

Applying ATC1)

and ACL2)

14~15 50~53

1) Asynchronous Transmission Channel
2) Application Customized Library

The effect of an aynchronous channel is that it reduces wait

time of an offloading client. Likewise, when an offloading

client processes bi-way function, an offloading server can

transfer other data through an asynchronous transmission

channel without a reponse delay. Also, the effect of applying

an application customized library is that it reduces an entire

amount of transferred data between server and client. As shown

in Table 1, after applying all improvement features to

offloading engine, it led to the performance improvement of

apploximately 65~120% for that application's FPS.

6. Conclusions

In this Paper, we introduced an efficient on-line software

service using an application customized graphic offloading

module library. Also, we showed a client-based remote 3D

rendering concept using graphic offloading for server-based

on-line software service and window message virtualization to

provide a virtualized desktop window which the 2D window

created by offloading application software is processed

independently in the server’s window management system. To

improve the rendering performance of graphic offloading

software service, we added an asynchronous transmission

channel and thread to the offloading server/client engine. Also,

we added optimized common module and application specific

module to the graphic offloading engine. To do that, we

introduced how to implement the application specific module

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

56 2015. 10

using analyzing patterns of graphic related APIs and messages

that are generated by executed software. Also, we showed how

to design the optimized common module using server side

information caching, such as window Z-order caching, window

information caching and device context caching.

By applying our proposed performance improvrment

features, we measured a rendering performance of the

offloading software service. It led to the performance

improvement of apploximately 65~120% for that application’s

FPS. The performance improvement analysis through applying

and testing various applications and the compression

transmission of data between server and client will be left for

future work.

Reference

[1] Won Hyuk Choi, Su Min Jang, Ji Hoon Choi, Won Young

Kim, “A Design of SW Service Based on Graphic

Offloading Computing Using Client’s Desktop Window

Virtualization”, ICONI 2012, pp.221- 224, 2012.

[2] http://www.citrix.com/products/xendesktop/overview.html

[3] http://www.citrix.com/xendesktop

[4] http://technet.microsoft.com/en-us/library/hh831447.aspx

[5] Aymen Abdullah Alsaffar, Song Biao, Mohammad

Mehedi Hassan, Eui-Nam Huh, “A Framework of

N-Screen Session Manager based N-Screen Service using

Cloud Computing in Thin-Client Environment”, Journal

of Internet Computing and Services, v.13, no.2, pp.21-32,

Apr. 2012.

http://dx.doi.org/10.7472/jksii.2012.13.2.21

[6] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan,

Harshvardhan Kharche, Niraj Tolia, Vanish Talwar,

Parthasarathy Ranganathan, “GViM: GPU-accelerated

virtual machines”, HPCVirt 09, pp.17-24, 2009.

http://dx.doi.org/10.1145/1519138.1519141

[7] Huerta-Canepa G., Dongman Lee, "An Adaptable

Application Offloading Scheme Based on Application

Behavior", Advanced Information Networking and

Applications Workshops, pp.387-392, 2008.

http://dx.doi.org/10.1109/WAINA.2008.148

[8] Su Min Jang, Won Hyuk Choi, Won Young Kim, “Client

Rendering Method for Desktop Virtualization Services”,

ETRI Journal, v.35, no. 2, pp. 348-351, 2013.

http://dx.doi.org/10.4218/etrij.13.0212.0213

[9] Won Hyuk Choi, Won Young Kim, “An Implementation

of Graphic Offloading Computing using GPU

Virtualization based on API Remoting on a Server-based

Software Service”, Journal of Internet Computing and

Services, v.12, no.6, pp.53-62, Dec. 2011.

http://www.jksii.or.kr/upload/1/889_1.pdf

[10] Dusung Back, Kihyun Pyun, “A Protection Technique for

Kernel Functions under the Windows Operating System”,

Journal of Internet Computing and Services, v.15, no.5,

pp.133-139, Dec. 2014.

http://dx.doi.org/ 10.7472/jksii.2014.15.5.133

[11] Moonyoung Chung, Jihoon Choi, Won-Hyuk Choi,

Won-Young Kim, “An Efficient Thread Management for

the Client-side Graphic Rendering on a Server-based

Software Service”, Proceedings of the Korea Information

Processing Society Conference, v.19, no.2, pp.209-211,

Nov. 2011

응용 맞춤형 그래픽 분할 실행 라이 러리에 기반한 효율 인 온라인 소 트웨어 서비스

한국 인터넷 정보학회 (16권5호) 57

◐ 자 소 개 ◑

최 원 (WonHyuk Choi)

1999년 경북대학교 컴퓨터공학과 졸업(학사)

2001년 경북대학교 컴퓨터공학과 졸업(석사)

2001년~현재 한국전자통신연구원 재직
관심분야: SW 가상화, SW 서비스

김 원 (Won-Young Kim)

1989년 이화여자대학교 전산학과 졸업(학사)

1991년 KAIST 전산학과 졸업(석사)

1998년 KAIST 전산학과 졸업(박사)

1999년 ~ 현재 한국전자통신연구원 고성능컴퓨팅SW연구실 실장
관심 분야: SW 서비스

