DOI QR코드

DOI QR Code

The Influence of Suction Foundation Models for Offshore Wind Turbine

해상풍력발전 석션기초의 강성산정 방법에 따른 영향 분석

  • Received : 2015.09.07
  • Accepted : 2015.10.01
  • Published : 2015.10.31

Abstract

Suction piles have been widely used as foundations and anchor systems in offshore industry, and recently, it have been tried to be used as foundations for offshore wind turbines. Many researches have shown that stiffness of a foundation could effect dynamic responses of a offshore wind turbine so that appropriate modeling application of wind turbine foundations is recommended. In this paper, we calculate a stiffness matrix of a suction foundation through 3D FEM analysis and compare the results with the ones calculated by conventional formula for estimating stiffness of shallow foundations. And then we carry out integrated load analysis for the evaluation of dynamic responses and natural frequencies of the structure using the calculated stiffness matrix. The results shows that the effect of load in the mudline is not large, but in the case of assuming the foundation as a fixed support, the natural frequency is over-estimated up to 10%. Therefore, considering stiffness of foundations is recommended when you evaluate the natural frequencies of wind turbine structures.

석션기초는 해양분야의 기초 및 앵커로 널리 사용되고 있으며, 최근 들어 해상풍력발전기의 기초로도 그 활용 범위가 확대되고 있다. 많은 선행 연구로부터 기초구조물의 강성이 해상풍력발전기의 동적응답에 영향을 줄 수 있기 때문에 기초구조물에 대한 적절한 모델링이 필요한 것으로 입증된 바 있다. 본 논문에서는 3차원 유한요소 해석을 수행하여 석션기초의 강성행렬을 산정하였다. 이를 기존의 중력식 기초 강성 산정식에 의한 결과와 비교하였으며, 산정한 강성행렬을 적용하여 구조물의 동적응답과 고유진동수 검토를 위한 통합하중해석을 수행하였다. 해석결과 mudline에서 발생하는 하중에 대한 영향은 크지 않은 것으로 나타났지만, 기초를 고정단으로 모델링한 경우 고유진동수가 최대 약 10% 과대 예측하는 것으로 나타났다. 풍력발전기 공진 회피에 대한 검토 시 기초강성을 고려해야할 것으로 판단된다.

Keywords

References

  1. Andersen, L., Ibsen, L. and Liingaard, M. (2009). Lumped-parameter model of a bucket foundation, in S. Pietruszczak, G. N. Pande, C. Tamagnini & R. Wan(eds), Computational Geomechanics: COMGEO I, IC2E International Center for Computational Engineering, 731-742.
  2. API (2010). Recommended practice for planning, designing and constructing fixed offshore platforms, Rp2a-wsd, American Petroleum Institute, Dallas, Texas, United States of America.
  3. Bush, E. and Manuel, L. (2009). "The influence of foundation modeling assumptions on long-term load prediction for offshore wind turbines", Proc. of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, May 31-June 5.
  4. DNV (2013). DNV-OS-J101, Design of offshore wind turbine structures, Det Norske Veritas.
  5. GL (2013). Bladed User manual, Garrad Hassan & Parters Ltd.
  6. IEC (2009). IEC 61400-3 Wind Turbines. Part 3: Design Requirements for offshore wind turbines, International Electrotechnical Commission.
  7. Lesny, K., Paikowsky, S.G. and Gurbuz, A. (2007). Scale Effects in Lateral Load Response of Large Diameter Monopiles, Contemporary Issues in Deep Foundations (GSP 158).
  8. Make consulting (2011). Offshore wind power development.
  9. Reese, L.C., Impe, W.F. van, Single Piles and Pile Groups Under Lateral Loading, The Netherlands, 2001.
  10. Simulia (2010). Abaqus user's manual, Dassault Systemes Simulia Corp.
  11. TRB (2011). Structural Integrity of Offshore Wind Turbines, Transportation Research Board, Special Report 305.