DOI QR코드

DOI QR Code

NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

  • Liu, Qihui (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Tian, Yuan (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Zhao, Xiangfeng (Department of Immunology, Faculty of Basic Medical Sciences, Guilin Medical University) ;
  • Jing, Haifeng (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Xie, Qi (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Li, Peng (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Li, Dong (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Yan, Dongmei (Department of Immunology, College of Basic Medical Sciences, Jilin University) ;
  • Zhu, Xun (Department of Immunology, College of Basic Medical Sciences, Jilin University)
  • Received : 2015.05.11
  • Accepted : 2015.07.13
  • Published : 2015.10.31

Abstract

Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-$Gu{\acute{e}}rin$) activates disabled $na{\ddot{i}}ve$ macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). 1 The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-${\alpha}$), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-$1{\beta}$), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-${\beta}$) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

Keywords

References

  1. Andrade, M.R., Amaral, E.P., Ribeiro, S.C., Almeida, F.M., Peres, T.V., Lanes, V., D'Imperio-Lima, M.R., and Lasunskaia, E.B. (2012). Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages. BMC Microbiol. 12, 166. https://doi.org/10.1186/1471-2180-12-166
  2. Baldessari, D., Badaloni, A., Longhi, R., Zappavigna, V., and Consalez, G.G. (2004). MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol. 5, 48. https://doi.org/10.1186/1471-2121-5-48
  3. Benoit, M., Desnues, B., and Mege, J.L. (2008). Macrophage polarization in bacterial infections. J. Immunol. 181, 3733-3739. https://doi.org/10.4049/jimmunol.181.6.3733
  4. Biswas, S.K., and Mantovani, A. (2012). Orchestration of metabolism by macrophages. Cell Metab. 15, 432-437. https://doi.org/10.1016/j.cmet.2011.11.013
  5. Boehning, D., Patterson, R.L., Sedaghat, L., Glebova, N.O., Kurosaki, T., and Snyder, S.H. (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol. 5, 1051-1061. https://doi.org/10.1038/ncb1063
  6. Boehning, D., van Rossum, D.B., Patterson, R.L., and Snyder, S.H. (2005). A peptide inhibitor of cytochrome c/inositol 1,4,5- trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc. Natl. Acad. Sci. USA 102, 1466-1471. https://doi.org/10.1073/pnas.0409650102
  7. Chan, T., Pek, E.A., Huth, K., and Ashkar AA (2011). CD4(+) T-cells are important in regulating macrophage polarization in C57BL/6 wild-type mice. Cell Immunol. 266, 180-186. https://doi.org/10.1016/j.cellimm.2010.10.002
  8. Collins, S.R., and Meyer, T. (2009). Calcium flickers lighting the way in chemotaxis? Dev. Cell. 16, 160-161. https://doi.org/10.1016/j.devcel.2009.01.018
  9. Das, R., Ganapathy, S., Settle, M., and Plow, E.F. (2014). Plasminogen promotes macrophage phagocytosis in mice. Blood 124, 679-688. https://doi.org/10.1182/blood-2014-01-549659
  10. DesJardin, L.E., Kaufman, T.M., Potts, B., Kutzbach, B., Yi, H., and Schlesinger, L.S. (2002). Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcgammaRII and the mannose receptor. Microbiology 148, 3161-3171. https://doi.org/10.1099/00221287-148-10-3161
  11. Diehl, G.E., Yue, H.H., Hsieh, K., Kuang, A.A., Ho, M., Morici, L.A., Lenz, L.L., Cado, D., Riley, L.W., and Winoto, A. (2004). TRAILR as a negative regulator of innate immune cell responses. Immunity 21, 877-889. https://doi.org/10.1016/j.immuni.2004.11.008
  12. Epelman, S., Lavine, K.J., and Randolph, G.J. (2014). Origin and functions of tissue macrophages. Immunity 41, 21-35. https://doi.org/10.1016/j.immuni.2014.06.013
  13. Evans, J.H., and Falke, J.J. (2007). $Ca^{2+}$ influx is an essential component of the positive-feedback loop that maintains leadingedge structure and activity in macrophages. Proc. Natl. Acad. Sci. USA 104, 16176-16181. https://doi.org/10.1073/pnas.0707719104
  14. Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593-604. https://doi.org/10.1016/j.immuni.2010.05.007
  15. Heanue, T.A., and Pachnis, V. (2006). Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc. Natl. Acad. Sci. USA 103, 6919-6924. https://doi.org/10.1073/pnas.0602152103
  16. Herder, V., Iskandar, C.D., Kegler, K., Hansmann, F., Elmarabet, S.A., Khan, M.A., Kalkuhl, A., Deschl, U., Baumgartner, W., Ulrich, R., et al. (2014). Dynamic changes of microglia/ macrophage M1 and M2 polarization in theiler's murine encephalomyelitis. Brain Pathol. doi: 10.1111/bpa.12238. [Epub ahead of print]
  17. Ho, S.H., So, G.M., and Chow, K.L. (2001). Postembryonic expression of Caenorhabditis elegans mab-21 and its requirement in sensory ray differentiation. Dev. Dyn. 221, 422-430. https://doi.org/10.1002/dvdy.1161
  18. Huang, P., Ma, C., Xu, P., Guo, K., Xu, A., and Liu, C. (2015).Efficacy of intravesical Bacillus Calmette-Guerin therapy against tumor immune escape in an orthotopic model of bladder cancer. Exp. Ther. Med. 9, 162-166. https://doi.org/10.3892/etm.2014.2060
  19. Kang, B.N., Ahmad, A.S., Saleem, S., Patterson, R.L., Hester, L., Doré, S., and Snyder, S.H. (2010). Death-associated protein kinase- mediated cell death modulated by interaction with DANGER. J. Neurosci. 30, 93-98. https://doi.org/10.1523/JNEUROSCI.3974-09.2010
  20. Labonte, A.C., Tosello-Trampont, A.C., and Hahn, Y.S. (2014). The role of macrophage polarization in infectious and inflammatory diseases. Mol. Cells 37, 275-285. https://doi.org/10.14348/molcells.2014.2374
  21. Liu, C., Li, Y., Yu, J., Feng, L., Hou, S., Liu, Y., Guo, M., Xie, Y., Meng, J., Zhang, H., et al. (2013). Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8, e54841. https://doi.org/10.1371/journal.pone.0054841
  22. Liu, X., Dowell, A.C., Patel, P., Viney, R.P., Foster, M.C., Porfiri, E., James, N.D., and Bryan, R.T. (2014). Cytokines as effectors and predictors of responses in the treatment of bladder cancer by bacillus Calmette-Guerin. Future Oncol. 10, 1443-1456. https://doi.org/10.2217/fon.14.79
  23. Lodillinsky, C., Langle, Y., Guionet, A., Gongora, A., Baldi, A., Sandes, E.O., Casabe, A., and Eijan, A.M. (2010). Cytokines as effectors and predictors of responses in the treatment of bladder cancer by bacillus Calmette-Guerin. PLoS One 5, e13571. https://doi.org/10.1371/journal.pone.0013571
  24. Lopes, R.L., Borges, T.J., Araujo, J.F., Pinho, N.G., Bergamin, L.S., Battastini, A.M., Muraro, S.P., Souza, A.P., Zanin, R.F., and Bonorino, C. (2014). Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype. PLoS One 9, e113441. https://doi.org/10.1371/journal.pone.0113441
  25. Luo, Y., and Knudson, M.J. (2010). Mycobacterium bovis bacillus Calmette-Guérin-induced macrophage cytotoxicity against bladder cancer cells. Clin. Dev. Immunol. 2010, 357591.
  26. Luo, Y., Yamada, H., Evanoff, D.P., and Chen, X. (2006). Role of Th1-stimulating cytokines in bacillus Calmette-Guerin(BCG)- induced macrophage cytotoxicity against mouse bladder cancer MBT-2 cells. Clin. ExpImmunol. 146, 181-188.
  27. Nair, S., Ramaswamy, P.A., Ghosh, S., Joshi, D.C., Pathak, N., Siddiqui, I., Sharma, P., Hasnain, S.E., Mande, S.C., and Mukhopadhyay, S. (2009). The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J. Immunol. 83, 6269-6281.
  28. Overdijk, M.B., Verploegen, S., Bogels, M., van Egmond, M., Lammerts van Bueren, J.J., Mutis, T., Groen, R.W., Breij, E., Martens, A.C., Bleeker, W.K., et al. (2015). Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 7, 311-321. https://doi.org/10.1080/19420862.2015.1007813
  29. Pai, R.K., Pennini, M.E., Tobian, A.A., Canaday, D.H., Boom, W.H., and Harding, C.V. (2014). Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages. Infect. Immun. 72, 6603-6614.
  30. Park, H.G., Lee, Y.R., Jun, J.K., and Lee, W.L. (2014). Exercise training is more effective than resveratrol supplementation on alleviation of inflammation in peritoneal macrophages of high fat diet mice. J. Exerc. Nutrition Biochem. 18, 79-87. https://doi.org/10.5717/jenb.2014.18.1.79
  31. Pecora, N.D., Gehring, A.J., Canaday, D.H., Boom, W.H., and Harding, C.V. (2006). Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol. 177, 422-429. https://doi.org/10.4049/jimmunol.177.1.422
  32. Pryor, K., Goddard, J., Goldstein, D., Stricker, P., Russell, P., Golovsky, D., and Penny, R. (1995). Bacillus Calmette-Guerin (BCG) enhances monocyte- and lymphocyte-mediated bladder tumour cell killing. Br J. Cancer 71, 801-807. https://doi.org/10.1038/bjc.1995.155
  33. Shi, Y., Fan, X., Deng, H., Brezski, R.J., Rycyzyn, M., Jordan, R.E., Strohl, W.R., Zou, Q., Zhang, N., and An, Z. (2015). Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with $Fc\gamma$ receptors on macrophages. J. Immunol. 194, 4379-4386. https://doi.org/10.4049/jimmunol.1402891
  34. Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787-795 https://doi.org/10.1172/JCI59643
  35. Sica, A., Invernizzi, P., and Mantovani, A. (2014). Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 59, 2034-2042. https://doi.org/10.1002/hep.26754
  36. Svatek, R.S., Zhao, X.R., Morales, E.E., Jha, M.K., Tseng, T.Y., Hugen, C.M., Hurez, V., Hernandez, J., and Curiel, T.J. (2015). Sequential intravesical mitomycin plus Bacillus Calmette-Guérin for non-muscle-invasive urothelial bladder carcinoma: translational and phase I clinical trial. Clin. Cancer Res. 21, 303-311. https://doi.org/10.1158/1078-0432.CCR-14-1781
  37. Tang, T.S., Tu, H., Chan, E.Y., Maximov, A., Wang, Z., Wellington, C.L., Hayden, M.R., and Bezprozvanny, I. (2003). Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227-239 https://doi.org/10.1016/S0896-6273(03)00366-0
  38. Thompson, D.B., Siref, L.E., Feloney, M.P., Hauke, R.J., and Agrawal, D.K .(2015). Immunological basis in the pathogenesis and treatment of bladder cancer. Exp. Rev. Clin. Immunol. 11, 265-279. https://doi.org/10.1586/1744666X.2015.983082
  39. Traves, P.G., Pimentel-Santillana, M., Carrasquero, L.M., Perez- Sen, R., Delicado, E.G., Luque, A., Izquierdo, M., Martin-Sanz, P., Miras-Portugal, M.T., and Bosca, L. (2013). Selective impairment of P2Y signaling by prostaglandin E2 in macrophages: implications for Ca2+-dependent responses. J. Immunol. 190, 4226-4235 https://doi.org/10.4049/jimmunol.1203029
  40. van Rossum, D.B., Patterson, R.L., Cheung, K.H., Barrow, R.K., Syrovatkina, V., Gessell, G.S., Burkholder, S.G., Watkins, D.N., Foskett, J.K., and Snyder, S.H. (2006). DANGER, a novel regulatory protein of inositol 1,4,5-trisphosphate-receptor activity. J. Biol. Chem. 281, 37111-37116. https://doi.org/10.1074/jbc.M608760200
  41. Villalta, S.A., Nguyen, H.X., Deng, B., Gotoh, T., and Tidball, J.G. (2009). Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18, 482-496.
  42. Wang, N., Liang, H., and Zen, K. (2014). Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5, 614.
  43. Wong, S.C., Puaux, A.L., Chittezhath, M., Shalova, I., Kajiji, T.S., Wang, X., Abastado, J.P., Lam, K.P., and Biswas, S.K. (2010). Macrophage polarization to a unique phenotype driven by B cells. Eur. J. Immunol. 40, 2296-2307. https://doi.org/10.1002/eji.200940288
  44. Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. Nature 496, 445-455. https://doi.org/10.1038/nature12034
  45. Yamada, R., Mizutani-Koseki, Y., Koseki, H., and Takahashi, N. (2004). Requirement for Mab21l2 during development of murine retina and ventral body wall. Dev Biol 274, 295-307. https://doi.org/10.1016/j.ydbio.2004.07.016
  46. Zhang, L., Lun, Y., Yan, D., Yu, L., Ma, W., Du, B., and Zhu, X. (2007). Proteomic analysis of macrophages: a new way to identify novel cell-surface antigens. J. Immunol. Methods 321, 80-85.
  47. Zhao, X., Zhang, L., Yan, D., Feng, X., Chu, D., Li, B., Du, B., and Zhu, X. (2011). Phylogenetic analysis and prokaryotic expression of NMAAP1 derived from BCG-activated murine macrophages. Comp. Immunol. Microbiol. Infect. Dis. 34, 123-128. https://doi.org/10.1016/j.cimid.2010.04.002

Cited by

  1. MafB enhances the phagocytic activity of RAW264.7 macrophages by promoting Fcgr3 expression vol.482, pp.2, 2017, https://doi.org/10.1016/j.bbrc.2016.11.070
  2. NMAAP1 Maintains M1 Phenotype in Macrophages Through Binding to IP3R and Activating Calcium-related Signaling Pathways vol.26, pp.10, 2015, https://doi.org/10.2174/0929866526666190503105343
  3. The effect of BCG vaccination on macrophage phenotype in a mouse model of intranasal Mycobacterium bovis challenge vol.38, pp.30, 2020, https://doi.org/10.1016/j.vaccine.2020.05.033
  4. LPSlow-Macrophages Alleviate the Outcome of Graft-Versus-Host Disease Without Aggravating Lymphoma Growth in Mice vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.670776
  5. Bacillus Calmette-Guerin (BCG) vaccination to treat endometriosis vol.39, pp.50, 2015, https://doi.org/10.1016/j.vaccine.2021.07.020
  6. Intravesical High Dose BCG Tokyo and Low Dose BCG Tokyo with GMCSF+IFN α Induce Systemic Immunity in a Murine Orthotopic Bladder Cancer Model vol.9, pp.12, 2021, https://doi.org/10.3390/biomedicines9121766