빅 데이터기반 마이닝 마인즈 헬스케어 프레임워크

  • 발행 : 2015.10.31

초록

최근 의학 기술이 눈부시게 발전함에 따라 사람들은 수명이 연장되고 삶의 질 향상에 많은 관심을 가지게 되었다. 더욱이 혁신적인 디지털 기술 발전과 함께 다양한 웨어러블 기기와 수많은 헬스케어 어플리케이션이 출시되고 있으며, 이들은 어떻게 하면 개인의 성향이나 체질에 잘 맞는 맞춤형 (개인화) 서비스를 제공할 수 있을 것인가에 관심을 두고 진화하고 있다. 따라서 IoT 환경의 일상생활에서 입력되는 센서 데이터의 수집, 처리, 가공 기술, 일상 행위 및 라이프 스타일 인지, 지식 획득 및 관리 기술, 개인화 추천서비스 제공, 프라이버시 및 보안을 통합적으로 지원할 수 있는 프레임워크 개발에 대한 요구가 증대되고 있다. 이에 본 고에서는 저자가 개발중인 개인 맞춤 건강 및 웰니스 서비스를 제공하는 마이닝 마인즈 프레임워크를 소개한다. 마이닝 마인즈는 현존하는 최신 기술의 집약체로 개인화, 큐레이션, 빅 데이터 처리, 클라우드 컴퓨팅의 활용, 다양한 센서 정보의 수집과 분석, 진화형 지식의 생성과 관리, UI/UX를 통한 습관화 유도 등 다양한 요소를 포함한다. 그리고 건강 및 웰니스 프레임워크 요구사항 분석을 통해 마이닝 마인즈가 이러한 요구를 충족시킬 수 있으며, 개발된 프로토타입을 통해 개인화 서비스의 발전 가능성을 입증하고 향후 나아가야 할 방향을 제시한다.

키워드

참고문헌

  1. T. Hafner and J. Shiffman, "The emergence of global attention to health systems strengthening," Health Policy and Planning, vol. 28, no. 1, pp.41-50, 2013. https://doi.org/10.1093/heapol/czs023
  2. L. Hood and M. Flores, "A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory," New Biotechnology, vol. 29, no. 6, pp. 613-624, 2012. https://doi.org/10.1016/j.nbt.2012.03.004
  3. E. M. Matheson, D. E. King, and C. J. Everett, "Healthy lifestyle habits and mortality in overweight and obese individuals," The Journal of the American Board of Family Medicine, vol. 25, no. 1, pp. 9-15, 2012. https://doi.org/10.3122/jabfm.2012.01.110164
  4. M. M. Gillen, C. N. Markey, and P. M. Markey, "An examination of dieting behaviors among adults: Links with depression," Eating Behaviors, vol. 13, no. 2, pp. 88-93, 2012. https://doi.org/10.1016/j.eatbeh.2011.11.014
  5. W. Demark-Wahnefried and L. W. Jones, "Promoting a healthy lifestyle among cancer survivors," Hematology/Oncology Clinics of North America, vol. 22, no. 2, pp. 319-342, 2008. https://doi.org/10.1016/j.hoc.2008.01.012
  6. M. Swan, "Health 2050: the realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen,"Journal of Personalized Medicine, vol. 2, no. 3, pp. 93-118, 2012. https://doi.org/10.3390/jpm2030093
  7. A. C. Powell, A. B. Landman, and D. W. Bates, "In search of a few good apps," The Journal of the American Medical Association, vol. 311, no. 18, pp. 1851-1852, 2014. https://doi.org/10.1001/jama.2014.2564
  8. O. Banos, C. Villalonga, M. Damas, P. Gloesekoetter, H. Pomares, and I. Rojas, "Physiodroid: Combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring," The Scientific World Journal, vol. 2014, no. 490824, pp. 1-11, 2014.
  9. J. Oresko, Z. Jin, J. Cheng, S. Huang, Y. Sun, H. Duschl, and A. C. Cheng, "A wearable smartphonebased platform for real-time cardiovascular disease detection via electrocardiogram processing," IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 3, pp. 734-740, May 2010. https://doi.org/10.1109/TITB.2010.2047865
  10. H. Hermens, H. op den Akker, M. Tabak, J. Wijsman, and M. Vollenbroek, "Personalized coaching systems to support healthy behavior in people with chronic conditions," Journal of Electromyography and Kinesiology, vol. 24, no. 6, pp. 815-826, 2014. https://doi.org/10.1016/j.jelekin.2014.10.003
  11. P.-H. Chen and H.-M. Chen, "Framework designintegrating an android open platform with multiinterface biomedical modules for physiological measurement," Journal of Convergence Information Technology, vol. 7, no. 12, pp. 310-319, 2012. https://doi.org/10.4156/jcit.vol7.issue12.35
  12. G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari, "Enabling effective programming and flexible management of efficient body sensor network applications," IEEE Transactions on Human-Machine Systems, vol. 43, no. 1, pp. 115-133, January 2013. https://doi.org/10.1109/TSMCC.2012.2215852
  13. A. Gaggioli, G. Pioggia, G. Tartarisco, G. Baldus, D. Corda, P. Cipresso, and G. Riva, "A mobile data collection platform for mental health research," Personal Ubiquitous Computer, vol. 17, no. 2, pp. 241-251, 2013. https://doi.org/10.1007/s00779-011-0465-2
  14. G. Yang, L. Xie, M. Mantysalo, X. Zhou, Z. Pang, L. D. Xu, S. Kao-Walter, Q. Chen, and L.-R. Zheng, "A health-iot platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box," IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2180-2191, Nov 2014. https://doi.org/10.1109/TII.2014.2307795
  15. O. Banos, R. Garcia, J. A. Holgado, M. Damas, H. Pomares, I. Rojas, A. Saez, and C. Villalonga, "mHealthDroid: a novel framework for agile development of mobile health applications," in Proceedings of the 6th International Work-conferenc eonAmbientAssistedLivinganActiveAgeing,2014.
  16. D. Estrin and I. Sim, "Open mhealth architecture: An engine for health care innovation," Science, vol. 330, no. 6005, pp. 759-760, 2010. https://doi.org/10.1126/science.1196187
  17. M. Han, L. T. Vinh, Y.-K. Lee, and S. Lee, "Comprehensive context recognizer based on multimodal sensors in a smartphone," Sensors, vol. 12, no. 9, pp. 12 588-12 605, 2012. https://doi.org/10.3390/s120912588
  18. T. Ali, M. Hussain, W. Ali Khan, M. Afzal, and S. Lee, "Authoring tool: Acquiring sharable knowledge for smart CDSS," in International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, pp. 1278-1281.
  19. B. E. Ainsworth, W. L. Haskell, S. D. Herrmann, N. Meckes, D. R. Bassett, C. Tudor-Locke, J. L. Greer, J. Vezina, M. C. Whitt-Glover, and A. S. Leon, "2011 compendium of physical activities: a second update of codes and met values," Medicine and Science in Sports and Exercise, vol. 43, no. 8, pp. 1575-1581, 2011. https://doi.org/10.1249/MSS.0b013e31821ece12
  20. C. L. Forgy, "Rete: A fast algorithm for the many pattern/many objectpattern match problem,"Artificial intelligence, vol. 19, no. 1, pp. 17-37, 1982. https://doi.org/10.1016/0004-3702(82)90020-0
  21. J.-F. Baget, "Improving the forward chaining algorithm for conceptual graphs rules." in International Conference on Principles of Knowledge Representation and Reasoning, 2004, pp. 407-414.
  22. S. Gong, "Learning user interest model for contentbased filtering in personalized recommendation system," International Journal of Digital Content Technology and its Applications, vol. 6, no. 11, pp. 155-162, 2012. https://doi.org/10.4156/jdcta.vol6.issue11.20
  23. S. Zhong and T. Chen, "An efficient identity-based protocol for private matching," International Journal of Communication Systems, vol. 24, no. 4, pp. 543-552, 2011. https://doi.org/10.1002/dac.1169
  24. G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, "A framework for efficient data anonymization under privacy and accuracy constraints," ACM Transactions on Database Systems, vol. 34, no. 2, p. 9, 2009.
  25. Z. Pervez, A. A. Awan, A. M. Khattak, S. Lee, and E.-N. Huh, "Privacyaware searching with oblivious term matching for cloud storage," The Journal of Supercomputing, vol. 63, no. 2, pp. 538-560, 2013. https://doi.org/10.1007/s11227-012-0829-z
  26. S. Li, L. D. Xu, and X. Wang, "A continuous biomedical signal acquisition system based on compressed sensing in body sensor networks,"IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1764-1771, Aug 2013. https://doi.org/10.1109/TII.2013.2245334