DOI QR코드

DOI QR Code

레이저 스캐닝 기술을 이용한 기존 터널 상부굴착에 따른 라이닝 거동 분석

Analyses of Existing Tunnel Liner Behaviors Caused by Excavation of Upper Layer with Using Laser Scanning Technology

  • 박태수 (상지대학교 토목공학과) ;
  • 이승호 (상지대학교 건설시스템공학과)
  • 투고 : 2015.08.18
  • 심사 : 2015.10.08
  • 발행 : 2015.10.31

초록

본 논문에서는 굴착 및 가시설 설치로 인한 기존 지하철 터널 라이닝에 발생되는 균열에 대한 모니터링과 분석을 실시하였다. 균열은 터널의 확폭부 근처에서 발생하였다. 균열 게이지, 내부변위계, 3D레이저 스캐너 같은 여러 계측 장비들은 발생된 균열과 균열이 터널에 미치는 영향에 대해 모니터링 하기 위해 설치되었다. 라이닝의 변형과 균열의 추가적인 확장 상태를 파악하기 위하여 균열 게이지와 내부변위계로 현장 계측을 실시하였다. 전체적인 변상 평가를 위하여 3D 레이저 스캐너를 활용하였다. 스캐너 데이터로부터 터널과 철도의 전체적인 변상 상태를 평가하였다. 지하 공사시 지반의 불연속성으로 인해 균열확장의 정확한 변형을 측정하는 것은 어려운 일이다. 본 논문에서는 터널 라이닝의 변형과 레일에 미치는 영향에 대하여 기존 계측방법과 전체적인 변상 상태에 대하여 분석하였다.

This paper deals with inspecting and monitoring cracks developed on a subway tunnel liner during the construction of temporary supports and excavation. The cracks have developed near a enlarged part of the tunnel. Several measurements, crack gauge, internal displacement measurement, 3-D laser scanner have been conducted to monitor the progress of cracks and effects of them on the tunnel. Local measurement, additional propagation of cracks and deformation of liner, have been conducted by crack gauge and internal displacement measurement. Global inspection has been conducted by 3-D laser scanner. From the scanned data, occurrence of global deformation of tunnel and rail has been evaluated. Because of limited sequence of construction at the ground, no apparent deformation of crack propagation has been measured. As presented in this paper, deformation of tunnel liner and effects of rail need to be investigated in view of local and global aspects.

키워드

참고문헌

  1. Arguelles-Fraga, R., Ordonez, C., Carcia-Cortes, S., and Roca-Pardinas, J. (2013), "Measurement Planning for Circular Cross-section Tunnels Using Terrestrial Laser Scanning", Automation in Construction 43, pp.1-9
  2. Fekete, S., Diederichs, M., and Lato, M. (2010), "Geotechnical and Operational Applications for 3-dimensional Laser Scanning in Drill and Blast Tunnels", Tunnelling and Underground Space Technology, 25, pp.614-628. https://doi.org/10.1016/j.tust.2010.04.008
  3. Gavilan, M., Sanchez, F., Ramos, J. A., and Marcos, O. (2013), "Mobile Inspection System for High-resolution Assessment of Tunnels", The 6th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Hong Kong.
  4. Lee, C-H., Chiu Y-C., Wang, T-T., and Huang, T-H. (2013), "Application and Validation of Simple Image-mosaic Technology for Interpreting Cracks on Tunnel Lining", Tunnelling and Underground Space Technology, 34, pp.61-72. https://doi.org/10.1016/j.tust.2012.11.002
  5. Montero, R., Victores. J.G., Martinez, S., Jardon, A., and Balaguer, C. (2015), "Past, Present and Future of Robotic Tunnel Inspection", Automation in Construction in print.
  6. Nuttens, T., S. Stal, C., Backer, H. D., Schotte, K., Bogaert, P. V., and Wulf, A. D. (2014), "Methodology for the Ovalization Monitoring of Newly Built Circular Train Tunnels based on Laser Scanning: Liefkenshoek Rail Link (Belgium)", Automation in Construction 43, pp.1-9 https://doi.org/10.1016/j.autcon.2014.02.017
  7. Pejic, M. (2013), "Design and Optimisation of Laser Scanning for Tunnels Geometry Inspection", Tunnelling and Underground Space Technology, 37, pp.199-206. https://doi.org/10.1016/j.tust.2013.04.004
  8. Puente, I., González-Jorge, H., and Martínez-Sánchez, J. Arias (2014), "Automatic Detection of Road Tunnel Lumanaires Using a Mobile LiDAR System", Measurement, 47, pp.569-575. https://doi.org/10.1016/j.measurement.2013.09.044
  9. Victores, J.G., Martinez, S. Jardon, A., and Balaguer, C., "Robotaided Tunnel Inspection and Maintenance System by Vision and Proximity Sensor Integration", Automation in Construction 20, pp.1-9.