DOI QR코드

DOI QR Code

Full Matrix Capture 기법을 통한 초음파신호 영상화 향상 연구

Study on Enhancements to Ultrasonic Data Imaging Using Full Matrix Capture Technique

  • 이태훈 (한국수력원자력(주) 중앙연구원) ;
  • 윤병식 (한국수력 원자력(주) 중앙연구원) ;
  • 이정석 (한국수력 원자력(주) 중앙연구원)
  • 투고 : 2015.07.31
  • 심사 : 2015.10.01
  • 발행 : 2015.10.30

초록

일반 위상배열 시스템에서는 다수의 압전소자를 가지는 탐촉자의 개별 소자에 인가하는 시간지연을 조절함으로써 초음파빔을 전자적으로 제어하고 초음파 영상을 획득한다. 반면, full matrix capture(FMC) 기술은 위상배열 탐촉자에 대해 하나의 소자에서 초음파를 입사시킨 신호를 모든 압전소자에서 수신하고, 이 방법으로 모든 가능한 송수신 조합의 신호 데이터를 수집하는 방법이다. 이 FMC 데이터는 후처리를 통해 초음파 영상으로 재구성될 수 있으며, 기존 위상배열 초음파 영상과 동등한 영상뿐만 아니라 가상적으로 관심영역의 모든 지점에 집속하여 분해능과 선명도가 향상된 total focusing method(TFM) 영상으로도 합성이 가능하다. 본 논문에서는 일반 위상배열장치를 이용하여 FMC가 가능하도록 시스템을 구현하고, 취득된 FMC 신호로부터 sector B-scan 및 TFM 이미지를 영상화하는 알고리즘에 대한 연구를 수행하였다.

A conventional phased array system can control an ultrasonic beam electronically by adjusting the excitation time delay of individual elements in a multi-element probe and produce an ultrasonic image. In Contrast, full matrix capture (FMC) is a data acquisition process that allows receiving ultrasonic signals from one single shot of the phased array transducer element through all the other elements and captures the complete dataset from every possible transmit-receive combination. This FMC data can be used to create the ultrasonic image in post processing. It is possible to produce not only images equivalent to conventional phased array image but also total focusing method (TFM) images with improved resolution and sharpness, which is virtually focused at any point in a region of interest. In this paper, the system that can perform FMC by using a conventional phased array instrument is developed, and a study was conducted on the imaging algorithms to reconstruct sector B-scan and TFM images from FMC dataset.

키워드

참고문헌

  1. Olympus NDT, "Advances in Phased Array Ultrasonic Technology Applications," Olympus NDT, Waltham, MA, USA, pp. 7-14 (2007)
  2. Y.-S. Cho and J.-H. Kim, "A small crack length evaluation technique by electronic scanning," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 1, pp. 15-20 (2009)
  3. Y.-S. Cho, G.-J. Jung, S.-K. Park and J.-H. Kim, "A study on a crack evaluation technique for turbine blade root using phased array ultrasonics," Journal of the Korean Society for Nondestructive Testing, Vol. 24, No. 2, pp. 151-157 (2004)
  4. B.-S. Yoon, Y.-S. Kim and J.-S. Lee, "Development of the phased array ultrasonic testing technique for nuclear power plant's small bore piping socket weld," Journal of the Korean Society for Nondestructive Testing, Vol. 33, No. 4, pp. 368-375 (2013) https://doi.org/10.7779/JKSNT.2013.33.4.368
  5. H. J. Shin, S.-J. Song and Y. H. Jang, "Nondestrucitve inspection of steel structures using phased array ultrasonic technique," Journal of the Korean Society for Nondestructive Testing, Vol. 20, No. 6, pp. 538-544 (2000)
  6. C. Holmes, B. W. Drinkwater and P. D. Wilcox, "Post-processing of the full matrix of ltrasonic transmit-receive array data for non-destructive evaluation," NDT&E International, Vol. 38, pp. 701-711 (2005) https://doi.org/10.1016/j.ndteint.2005.04.002
  7. P. Tremblay, D. Richard and H. K. Ann, "Development and validation of a full matrix capture solution," Ultrasonic NDE Workshop Proceedings, pp. 85-94 (2012)
  8. A. Bulavinov, R. Pinchuk, S. Pudovikov, "Innovative ultrasonic testing (UT) of nuclear components by sampling phased array with 3D visualization of inspection results," 8th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components, pp. 1-8 (2010)
  9. K. Nakahata, M. Hirata and S. Hirose, "Flaw reconstruction from scattering amplitude using full-waveform sampling and processing," Journal of The Japanese Society for Non-Destructive Inspection, Vol. 59, No. 6, pp. 277-283 (2010)
  10. A. Bulavinov and M. Kroning, "Real-time quantitative ultrasonic inspection," IV Conferencia Panamericana de END Buenos Aires, pp.1-15 (2007)
  11. T. H. Lee, B. S. Yoon and G. Y. Moon, "Synthesis of Ultrasonic image Using Signals Acquired by Full Matrix Capture," Proceedings of KSNT Spring Conference, pp. 385-392 (2014)
  12. S. Robert, O. Casula, M. Njiki and O. Roy, "Assessment of real-time techniques for ultrasonic non-destructive testing," Review of Progress in Quantitative Nondestructive Evaluation, Vol. 31, pp. 1960-1967 (2012)
  13. M. V. Felicen, A. Velichko and P. D. Wilcox, "Accurate depth measurement of small surfacebreaking cracks using an ultrasonic array postprocessing technique," NDT&E International, Vol. 68, pp. 105-112 (2014) https://doi.org/10.1016/j.ndteint.2014.08.004
  14. P. D. Wilcox, C. Holmes and B. W. Drinkwater, "Advanced reflector characterization with ultrasonic phased arrays in NDE applications," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, No. 8, pp. 1541-1550 (2007) https://doi.org/10.1109/TUFFC.2007.424