References
- Admi, H. and Shaham, B., Living with epilepsy: ordinary people coping with extraordinary situations, Qualitative Health Research, Vol.17, pp.1178-1187, 2007. https://doi.org/10.1177/1049732307307548
- Korean Neurological Association. Neurology, Seoul: Koonja Publishing Co., 2007.
- R. Sharma, R. B. Pachori, Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions, Expert Systems with Applications, Vol.42, pp.1106-1117, 2015. https://doi.org/10.1016/j.eswa.2014.08.030
- S. -H. Lee, J. S. Lim, J. -K. Kim, J. Yang, Y. Lee, Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance, Computer Methods and Programs in Biomedicine, Vol.116, pp.10-25, 2014. https://doi.org/10.1016/j.cmpb.2014.04.012
- Kemal Polat and Salih Gunes, Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals, Expert Systems with Applications, Vol.34, Issue 3, pp.2039-2048, 2008 https://doi.org/10.1016/j.eswa.2007.02.009
- Avci E, Hanbay D, Varol A. An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition, Expert Syst Appl, Vol.33, pp.582-589, 2007. https://doi.org/10.1016/j.eswa.2006.06.001
- Guler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients, J Neurosci Methods, Vol.148, pp.113-121, 2005. https://doi.org/10.1016/j.jneumeth.2005.04.013
- M. E. Menshawy, A. Benharref, M. Serhani, An automatic mobile-health based approach for EEG epileptic seizures detection, Expert Systems with Applications, Vol.42, 7157-7174, 2015 https://doi.org/10.1016/j.eswa.2015.04.068
- F Shayegha, S Sadria, R Amirfattahia, K Ansari-Aslb. A model-based method for computation ofcorrelation dimension, Lyapunov exponents andsynchronization from depth-EEG signals, COMPUT METH PROG BIO, Vol.113, pp.323-337, 2014. https://doi.org/10.1016/j.cmpb.2013.08.014
- Guler NH, Ubeyli̇ ED, Guler I. Recurrent neural networks employing Lyapunov exponents for EEG signal classification, Expert Sys Appl, Vol.25, pp.506-514, 2005.
- Abdulhamit Subasi, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, Vol.32, Issue 4, pp.1084-1093, 2007. https://doi.org/10.1016/j.eswa.2006.02.005
- Guler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients, J Neurosci Methods, Vol.148, pp.113-121, 2005. https://doi.org/10.1016/j.jneumeth.2005.04.013
- Y. Songa, J. Crowcroft, J. Zhang, Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine, Journal of Neuroscience Methods, Vol.210, pp.132-146, 2012. https://doi.org/10.1016/j.jneumeth.2012.07.003
- S. -H. Lee and J. S. Lim, Extracting Input Features and Fuzzy Rules for Classifying Epilepsy Based on NEWFM, Journal of Internet Computing and Services, Vol.10, No.5, pp.127-133, 2009.
- J. S. Lim, Finding Features for Real-Time Premature Ventricular Contraction Detection Using a Fuzzy Neural Network System, IEEE Transactions on Neural Networks, Vol.20, No.3, pp.522-527, 2009. https://doi.org/10.1109/TNN.2008.2012031