DOI QR코드

DOI QR Code

Estimation of the Mixture of Normals of Saving Rate Using Gibbs Algorithm

Gibbs알고리즘을 이용한 저축률의 정규분포혼합 추정

  • Yoon, Jong-In (Division of Business and Commercce, Baekseok University)
  • Received : 2015.08.20
  • Accepted : 2015.10.20
  • Published : 2015.10.28

Abstract

This research estimates the Mixture of Normals of households saving rate in Korea. Our sample is MDSS, micro-data in 2014 and Gibbs algorithm is used to estimate the Mixture of Normals. Evidences say some results. First, Gibbs algorithm works very well in estimating the Mixture of Normals. Second, Saving rate data has at least two components, one with mean zero and the other with mean 29.4%. It might be that households would be separated into high saving group and low saving group. Third, analysis of Mixture of Normals cannot answer that question and we find that income level and age cannot explain our results.

본 연구는 우리나라 가계저축률의 정규분포혼합을 추정한다. 2014년 마이크로데이터인 MDSS를 이용하였고 추정방법으로는 깁스알고리즘을 이용하였다. 실증분석결과의 주요내용은 다음과 같다. 첫째, 정규분포혼합을 추정하기 위한 방법으로 깁스알고리즘은 잘 작동하였다. 즉 주요 모수추정치는 모두 정상적 분포를 갖는 것으로 나타났다. 둘째 저축률 자료는 적어도 2개의 성분, 즉 저축률이 평균 0%인 성분과 평균 29.4%인 성분으로 이루어져 있는 것으로 보인다. 즉 우리나라의 가계는 고저축률 집단과 저저축률 집단으로 나누어질 수 있다는 뜻이다. 셋째 정규분포혼합모형 자체는 어떤 가계가 첫째 성분 또는 둘째 성분에 속하는가를 설명할 수 없다. 이에 본 연구는 추가적인 분석을 수행하였지만 소득수준과 가구주 연령은 이에 대한 설명력을 지니지 못하는 것으로 판단된다.

Keywords

References

  1. In-Oh, Jeon, "Effect of Social Media PR Marketing on Corporate Brand Expansion", Journal of Digital Convergence, Vol.12, No.8, pp.101-112, 2014 https://doi.org/10.14400/JDC.2014.12.8.101
  2. Jin-Taek, Jung, and Yoon-Muk, Lee, "Clustering Analysis of Smart Flexible Work Arranagement", Journal of Digital Convergence, Vol.11, No.11, pp.169-175, 2013 https://doi.org/10.14400/JDPM.2013.11.11.169
  3. Hyangsoo, Lee, "Leadership and Knowledge Management", Journal of Digital Convergence, Vol.12, No.10, pp.35-43, 2014 https://doi.org/10.14400/JDC.2014.12.10.35
  4. Yu Li, Ryu, "A Study on the Tableware Design using Geometric Pattern", Journal of Digital Convergence, Vol.12, No.8, pp.475-480, 2014 https://doi.org/10.14400/JDC.2014.12.8.475
  5. Keyong-Seog, Song, "Economic Characteristics and Implications of Net Neutrality", Journal of Digital Convergence, Vol.7, No.3, pp.1-11, 2009
  6. E.I., Altman, and Eisenbeis, R.A., "Financial Applications of Discriminant Analysis : A Clarification", Journal of Financial and Quantitative Analysis, Vol.13, pp. 185-195, 1978 https://doi.org/10.2307/2330534
  7. S.G., Coles, "An Introduction to Statistical Modeling of Extreme Values", Springer, London, 2001
  8. D., Easley, Kiefer, U., and O'Hara, M., "One Day in the Life of a Very Common Stock", Review of Financial Studies, Vol.10, pp. 805-835, 1997 https://doi.org/10.1093/rfs/10.3.805
  9. R.F. Engle, and Ng, V.K., "Measuring and testing the impact of news on volatility," Journal of Finance, Vol.48, pp. 1749-1778, 1993 https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
  10. S. Fruhwirth-Schnatter, "Finite Mixture and Markov Switching Models", Springer, New York, 2008
  11. A. Gelman, Carlin, J.B., Stern, H.S., and Rubin, D.B., "Bayesian Data Analysis", Chapman & Hall, New York, 2003
  12. S. Geman, and Geman, D.,"Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.6, pp. 721-741, 1994
  13. J. Geweke, "Contemporary Bayesian Econometrics and Statistics", Wiley, New Jersey, 2005
  14. L.R. Glosten, Jagannathan, R., and Runkle, D., "On the relation between the expected value and the volatility of the normal excess return on stocks", Journal of Finance, Vol.48, pp. 1779-1801, 1993 https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
  15. I. Lobato, and Velasco, C., "A Simple Test of Normality of Time Series". Econometric Theory, Vol.20, pp. 671-689, 2004
  16. F.M. Longin, "The asymptotic distribution of extreme stock market returns", Journal of Business, Vol.69, pp. 383-408, 1996 https://doi.org/10.1086/209695
  17. G. McLachlan, and Peel,D., "Finite Mixture Models", John Wiley & Sons, New York, 2000
  18. A.J. McNeil, Frey, R., and Embrechts, P., "Quantitative Risk Management: Concepts, Techniques, and Tools", Princeton University Press, New Jersey, 2005
  19. C.P. Robert, and Casella, G., "Monte Carlo Statistical Methods", Springer, New York, 2004
  20. P.E. Rossi, Allenby, G.M., and McCulloch, R. "Bayesian Statistics and Marketing", Wiley, West Susses, 2006