DOI QR코드

DOI QR Code

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar (Department of Engineering Geology and Hydrogeology, RWTH Aachen University) ;
  • Fernandez-Steeger, Tomas M. (Department of Engineering Geology and Hydrogeology, RWTH Aachen University) ;
  • Azzam, Rafig (Department of Engineering Geology and Hydrogeology, RWTH Aachen University)
  • Received : 2014.10.31
  • Accepted : 2015.07.14
  • Published : 2015.10.25

Abstract

Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.

Keywords

References

  1. Aulbach, B. and Ziegler, M. (2013), "Simplified design of excavation support and shafts for safety gainst hydraulic heave", Geomech. Tunn., 6(4), 362-374. https://doi.org/10.1002/geot.201300031
  2. Aulbach, B. and Ziegler, M. (2014), "Versagensform und Nachweisformat beim hydraulischen Grundbruch-Pladoyer fur den Terzaghi-Korper", Geotechnik, 37(1), 6-18. https://doi.org/10.1002/gete.201300020
  3. Bandini, P. and Sathiskumar, S. (2009), "Effect of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures", J. Geotech. Eng., 135(12), 1976-1980. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000177
  4. Benmebarek, N., Benmebarek, S. and Kastner, R. (2005), "Seepage failure of sand within a cofferdam", Comput. Geotech., 32(4), 264-273. https://doi.org/10.1016/j.compgeo.2005.03.001
  5. Cai, F., Ugai, K., Takahashi, C., Nakamura, H. and Okaki, I. (2004), "Seepage analysis of two case histories of piping induced by excavations in cohesionless soils", Proceedings of the First International Conference on Construction IT, Beijing, China, August.
  6. Clennell, M.B., Dewhurst, D.N., Brown, K.M. and Westbrook, G.K. (1999), Permeability Anisotropy of Consolidated Clays, Geotechnical Society Special Publication, No. 158, pp. 79-96.
  7. Das, B.M. (2008), Advanced Soil Mechanics, Taylor & Francis Group, London / New York.
  8. Davidenkoff, R. (1970), Unterlaufigkeit von Stauwerken, Werner Verlag, Dusseldorf, Germany.
  9. Davidenkoff, R.N. and Franke, O.L. (1965), "Untersuchung der raumlichen Sickerstromung in eine umspundete Baugrube in offenen Gewassern", Bautechnik, 42(9), 298-306.
  10. EAB (2008), Recommendations on excavations, Ernst & Sohn - Wiley, Berlin, Germany.
  11. EAU (2004), Recommendations of the committee for waterfront structures, harbours and waterways, Ernst & Sohn - Wiley, Berlin, Germany.
  12. EN 1997-1: Eurocode 7 (2004), Geotechnical design - Part 1: General rules, European Committee for Standardisation, Brussels, Belgium.
  13. Fellin, W., Kellermann, F. and Wilhelm, T. (2003), "Der Einfluss von Kanalbildungen auf die hydraulische Grundbruchsicherheit", Osterreichische Ingenieur- und Architekten Zeitschrift, 148(2), 42-47.
  14. Ghiassian, H. and Ghareh, S. (2008), "Stability of sandy slopes under seepage conditions", Landslides, 5(4), 397-406. https://doi.org/10.1007/s10346-008-0132-5
  15. Hamidi, B., Varaksin, S. and Nikraz, H. (2013), "Relative density concept is not a reliable criterion", Proceedings of the ICE-Ground Improvement, 166(4), 196-208. https://doi.org/10.1680/grim.11.00016
  16. Harr, M.E. (1962), Groundwater and Seepage, McGraw Hill Publishing Co., Inc., New York, NY, USA.
  17. Harza, L.F. (1935), "Uplift and seepage under dams in sand", Trans. Am. Soc. Civ. Eng. 100(1), 1352-1385.
  18. Hatanaka, M., Uchida, A. and Takehara, N. (1997), "Permeability characteristics of high - quality undisturbed sands measured in a triaxial cell", Soil. Found., 37(3), 129-135. https://doi.org/10.3208/sandf.37.3_129
  19. Hirosa, T. and Tanaka, T. (2007), "A case study on seepage failure of excavated bottom soil in a steel-sheet-pile-wall cofferdam", T. Jpn. Soc. Irrig. Drain. Reclam. Eng., 75(2), 145-156.
  20. Kaiser, P.K. and Hewitt, K.J. (1982), "The effect of groundwater flow on the stability and design of retained excavations", Can. Geotech. J., 19(2), 139-153. https://doi.org/10.1139/t82-016
  21. Ke, L. and Takahashi, A. (2012), "Strength reduction of cohesionless soil due to internal erosion induced by one dimensional upward seepage flow", Soil. Found., 52(4), 698-711. https://doi.org/10.1016/j.sandf.2012.07.010
  22. Lee, I.M. and Nam, S.W. (2001), "The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels", Tunn. Undergr. Space Technol., 16(1), 31-40. https://doi.org/10.1016/S0886-7798(01)00028-1
  23. Marsland, A. (1953), "Model experiments to study the influence of seepage on the stability of a sheeted excavation in sand", Geotechnique, 3(6), 223-241. https://doi.org/10.1680/geot.1953.3.6.223
  24. McNamee, J. (1949), "Seepage into a sheeted excavation", Geotechnique, 1(4), 229-241. https://doi.org/10.1680/geot.1949.1.4.229
  25. Odenwald, B. and Herten, M. (2008), "Hydraulischer Grundbruch: neue Erkenntnisse", Bautechnik, 85(9), 585- 595. https://doi.org/10.1002/bate.200810044
  26. Reddi, L.M. (2003), Seepage in Soils: Principles and Applications, John Wiley & Sons, Inc., NJ, USA.
  27. Schmitz, S. (1990), "Hydraulische Grundbruchsicherheit bei raumlicher Anstromung", Bautechnik, 67(9), 301-307.
  28. Skempton, A.W. and Brogan, J.M. (1994), "Experiments on piping in sandy gravels", Geotechnique, 44(3), 449-460. https://doi.org/10.1680/geot.1994.44.3.449
  29. Tanaka, T. and Verruijt, A. (1999), "Seepage failure of sand behind sheet piles. The mechanism and practical approach to analyse", J. Jpn. Geotech. Soc. Soil. Found., 39(3), 27-35. https://doi.org/10.3208/sandf.39.3_27
  30. Tanaka, T., Song, S., Shiba, Y., Kusumi, S. and Inoue, K. (2012), "Seepage failure of sand in three dimensions-experiments and numerical analyses", Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, August.
  31. Terzaghi, K. (1925), Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke-Verlag, Leipzig/Wien.
  32. Terzaghi, K. and Peck, R.B. (1948), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, NY, USA.
  33. Witt, K.J. and Brauns, J. (1983), "Permeability - anisotropy due to particle shape", J. Geotech. Eng., 109(9), 1181-1187. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:9(1181)
  34. Wudtke, R.B. and Witt, K.J. (2006), "A static analysis of hydraulic heave in cohesive soil", Proceedings of the 3rd International Conference on Scour and Erosion, Amsterdam, Netherlands, November.
  35. Yang, X.L. and Qin, C.B. (2014), "Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion", Geomech.Eng., Int. J., 6(5), 503-515. https://doi.org/10.12989/gae.2014.6.5.503
  36. Zheng, G. and Yang, J. (2011), "Analysis of the formula for checking the heaving stability of excavations", China Civil Eng. J., 44(2), 123-127.
  37. Ziegler, M., Aulbach, B., Heller, H. and Kuhlmann, D. (2009), "Der Hydraulischer Grundbruch -Bemessungsdiagramme zur Ermittlung der erforderlichen Einbindetiefe", Bautechnik, 86(9), 529-541. https://doi.org/10.1002/bate.200910053

Cited by

  1. Corrosion Rate Estimation in Steel Sheet Pile Walls - Comparison between Empirical Models and Eurocode 3, Part 5 vol.39, pp.1663-4144, 2018, https://doi.org/10.4028/www.scientific.net/JERA.39.76
  2. A spiral variable section capillary model for piping hydraulic gradient of soils causing water/mud inrush in tunnels vol.13, pp.6, 2017, https://doi.org/10.12989/gae.2017.13.6.947
  3. Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field vol.15, pp.1, 2018, https://doi.org/10.12989/gae.2018.15.1.677
  4. The Impact of Extreme Groundwater Recharge and Dewatering Events on the Efficiency of a Deep Anchored Wall vol.56, pp.2, 2015, https://doi.org/10.1007/s11204-019-09577-8
  5. Use of Quicksand Condition to Assess the Base Stabilities of Sheeted Excavation Pits Against Seepage Failure in Cohesionless Soils vol.44, pp.10, 2015, https://doi.org/10.1007/s13369-019-03890-y