DOI QR코드

DOI QR Code

위성 구성품의 3차원 최적 배치 설계

3D Optimal Layout Design of Satellite Equipment

  • Yeom, Seung-Yong (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Kim, Hong-Rae (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Chang, Young-Keun (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University)
  • 투고 : 2015.06.29
  • 심사 : 2015.09.25
  • 발행 : 2015.10.01

초록

최적 배치 설계는 다양한 산업분야에서 활용되고 있다. 우주분야인 위성 플랫폼에서도 제한된 공간 내에서 기계적, 열적, 전기적 인터페이스를 고려한 구성품 배치가 가능하도록 최적 배치 설계가 요구된다. 최적 배치 설계를 통해 합리적인 수준에서 최소화된 위성 플랫폼의 관성모멘트는 위성의 효율적인 자세제어 및 신속한 기동을 가능하게 하며, 위성의 임무성능을 향상시키는데 도움을 준다. 이를 위해 본 논문에서는 육면체 구조의 위성 플랫폼을 기반으로 내부 구성품들이 서로 간섭이 없는 상태에서 위성의 관성모멘트와 구성품 간 발열로 인한 영향을 최소로 하는 3D 최적 배치 설계를 제안한다. 본 연구에서는 3D 최적 배치 설계를 위해 새로운 유전 알고리즘을 제안한다.

The optimal layout design is used in the development of various areas of industry. In the field of space systems, components must be placed properly in the limited space of spacecraft by considering mechanical, thermal and electrical interfaces. When applying optimal layout design, a proper, even ideal placement of components is possible in the limited space of a satellite platform. Through the optimal placement design, the minimized moment of inertia enhances efficient attitude control, rapid maneuver and mission performance of the satellite. This paper proposes 3D optimal layout design that minimizes the spacecraft's moment of inertia and effect of thermal dissipation between inner components as well as interference between inner components based on a cubic-structure satellite platform. This study proposes the new genetic algorithm for 3D optimal layout design of the satellite platform.

키워드

참고문헌

  1. Zhi-Guo Sun and Hong-Fei Teng, "Optimal Layout Design of a Satellite Module", Engineering Optimization, Vol. 35, No. 5, 2003, pp. 513-529. https://doi.org/10.1080/03052150310001602335
  2. Bao Zhang and Hong-Fei Teng, "Layout Optimization of Satellite Module using Soft Computing Techniques", ELSEVIER, Vol. 8, No 1, 2007, pp. 507-521.
  3. S. Q. XIE, G. G. WANG and Y. LIU, "Nesting of Two-dimensional Irregular Parts: an Integrated Approach", International Journal of Computer Integrated Manufacturing, Vol. 20, No. 8, 2007, pp. 741-756. https://doi.org/10.1080/09511920600996401
  4. D.E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning", Addison-Wesley Publishing Company, INC., MA, 1989.
  5. Pierre M. Grignon and Georges M. Fadel, "A GA Based Configuration Design Optimization Method", ASME, Vol. 126, 2004, pp. 6-15. https://doi.org/10.1115/1.1637656
  6. Young-Keun Chang, et al, "Small-to-Mid Earth Observation Satellite Database Handbook (V3.1)", Space System Research Lab. 2014.
  7. Hong-Rae Kim, Young-Keun Chang, "Multidisciplinary Design Optimization of Earth Observation Satellite Conceptual Design using Collaborative Optimization", The Korea Society for Aeronautical and Space Science, Vol. 43, 2015, pp. 568-583. https://doi.org/10.5139/JKSAS.2015.43.6.568
  8. Jihong Zhu, Weihong Zhang, Liang Xia, Qiao Zhang, David Bassir, "Optimal Packing Configuration Design with Finite-Circle Method", Journal of Intelligent & Robotic Systems, Vol. 67, 2011, pp. 185-199.
  9. Ana Paula Curty Cuco, Fabiano L. de Sousa, Antonio J. Silva Neto, "A Multi-objective Methodology for Spacecraft Equipment Layouts", Optimization and Engineering, 2014.