DOI QR코드

DOI QR Code

레이온/폴리에틸렌옥사이드 분리막과 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터 특성

Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(Ethylene Oxide) Separator and a Hydrogel Electrolyte

  • 이해수 (한밭대학교 화학생명공학과) ;
  • 김광만 (한국전자통신연구원 전력제어소자연구실) ;
  • 장윤석 (한국기계연구원 인쇄전자연구실) ;
  • 김광영 (한국기계연구원 인쇄전자연구실) ;
  • 유정준 (한국에너지기술연구원 에너지저장연구단) ;
  • 김종휘 (한국에너지기술연구원 에너지저장연구단) ;
  • 고장면 (한밭대학교 화학생명공학과)
  • 투고 : 2015.07.14
  • 심사 : 2015.08.04
  • 발행 : 2015.08.31

초록

Rayon 분리막에 poly(ethylene oxide) (PEO)를 코팅하고 potassium polyacrylate (PAAK)-KOH 하이드로겔 전해질을 사용하여 기계적 강도 및 전기화학적 성질을 시험하였고, 이를 활성탄 수퍼커패시터에 적용하여 커패시터 특성을 조사하였다. PEO 코팅량의 증가에 따라 기계적 강도는 증가하였으며, PEO 함량을 5 wt.% 이하로 유지하면 이온전도도가 $10^{-2}S\;cm^{-1}$ 이상을 유지하여 실제 커패시터에의 활용이 가능하였다. 결과적으로 Rayon/PEO 분리막과 PAAK/KOH 전해질을 적용한 활성탄 수퍼커패시터는 $1000mV\;s^{-1}$의 높은 스캔속도에서도 비축적용량이 1000 사이클까지 안정하게 나타나는데, 이는 PEO 코팅이 Rayon의 장섬유 필라멘트간 엉킴점을 고정시켜 고출력 안정성을 얻을 수 있기 때문이다.

The mechanical and electrochemical properties of poly(ethylene oxide) (PEO)-coated Rayon separator were characterized using potassium polyacrylate (PAAK)-KOH electrolyte. The supercapacitive properties of activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was also tested. As the PEO content increased, the mechanical strength increased. Room-temperature ionic conductivity of over $10^{-2}S\;cm^{-1}$ was obtained at the PEO content lower than 5 wt.%, applicable to a supercapacitor. As a result, the specific capacitance at $1000mV\;s^{-1}$ of the activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was highly stable after 1000th cycle. This was due to high rate-capability provided by the fact that PEO coating could fix the entanglements among fiber filaments of Rayon.

키워드

참고문헌

  1. C.S. Yoon, J.M. Ko, M. Latifatu, H.S. Lee, Y.-G. Lee, K.M. Kim, J.H. Won, J. Jo, Y. Jang, and J.H. Kim, "Electrochemical Properties of Activated Carbon Supercapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte", Korean Chem. Eng. Res., 52, 553 (2014). https://doi.org/10.9713/kcer.2014.52.5.553
  2. M. Latifatu, J.M. Ko, Y.-G. Lee, K.M. Kim, J. Jo, Y. Jang, J.J. Yoo, and J.H. Kim, "Electrochemical Properties of Activated Carbon Supercapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte", Korean Chem. Eng. Res., 51, 550 (2013). https://doi.org/10.9713/kcer.2013.51.5.550
  3. Y. Nishiyama and M. Satoh, "Solvent- and Counterion- Specific Swelling Behavior of Poly(acrylic acid) Gels", J. Polym. Sci. Part B: Polym. Phys., 38, 2791 (2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2791::AID-POLB80>3.0.CO;2-1
  4. C. Iwakura, N. Furukawa, T. Ohnishi, K. Sakamoto, S. Nohara, and H. Inoue, "Nickel/Metal Hydride Cells Using an Alkaline Polymer Gel Electrolyte", Electrochemistry, 69, 659 (2001).
  5. C. Iwakura, S. Nohara, N. Furukawa, and H. Inoue, "The Possible Use of Polymer Gel Electrolytes in Nickel/Metal Hydride Battery", Solid State Ionics, 148, 487 (2002). https://doi.org/10.1016/S0167-2738(02)00092-9
  6. C. Iwakura, M. Horiguchi, S. Nohara, N. Furukawa, and H. Inoue, "Suppression of Electrolyte Creepage with Polymer Hydrogel Electrolyte for Nickel/Metal Hydride Batteries", J. Appl. Electrochem., 35, 293 (2005). https://doi.org/10.1007/s10800-004-6765-8
  7. C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue, and M. Morita, "New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte", Electrochem. Solid- State Lett., 6, A37 (2003). https://doi.org/10.1149/1.1535752
  8. S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, and C. Iwakura, "Hybrid Capacitor with Activated Carbon Electrode, $Ni(OH)_2$ Electrode and Polymer Hydrogel Electrolyte, J. Power Sources, 157, 605 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.024
  9. K.-T. Lee and N.-L. Wu, "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte", J. Power Sources, 179, 430 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
  10. K.-T. Lee, J.-F. Lee, and N.-L. Wu, "Electrochemical Characterizations on $MnO_2$ Supercapacitors with Potassium Polyacrylate and Potassium Polyacrylate-co- Polyacrylamide Gel Polymer Electrolytes", Electrochim. Acta, 54, 6148 (2009). https://doi.org/10.1016/j.electacta.2009.05.065
  11. H.-S. Nam, N.-L. Wu, K.-T. Lee, K.M. Kim, C.G. Yeom, L.R. Hepowit, J.M. Ko, and J.-D. Kim, "Electrochemical Capacitances of a Nanowire-Structured $MnO_2$ in Polyacrylate-Based Gel Electrolytes", J. Electrochem. Soc., 159, A899 (2012). https://doi.org/10.1149/2.112206jes
  12. K.M. Kim, J.H. Nam, Y.-G. Lee, W.I. Cho, and J.M. Ko, "Supercapacitive Properties of Electrodeposited $RuO_2$ Electrode in Acrylic Gel Polymer Electrolytes", Curr. Appl. Phys., 13, 1702 (2013). https://doi.org/10.1016/j.cap.2013.06.016
  13. J.M. Ko, J.H. Nam, J.H. Won, and K.M. Kim, "Supercapacitive Properties of Electrodeposited Polyaniline Electrode in Acrylic Gel Polymer Electrolytes", Synth. Metals, 189, 152 (2014). https://doi.org/10.1016/j.synthmet.2014.01.011
  14. Y.M. Lee, J.-W. Kim, N.-S. Choi, J.A. Lee, W.-H. Seol, and J.-K. Park, "Novel Porous Separator Based on PVdF and PE Non-Woven Matrix for Rechargeable Lithium Batteries", J. Power Sources, 139, 235 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.055
  15. A. Sheidaei, X. Xiao, X. Huang, and J. Hitt, "Mechanical Behavior of a Battery Separator in Electrolyte Solutions", J. Power Sources, 196, 8728 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.026
  16. H. Yu, Q. Tang, J. Wu, Y. Lin, L. Fan, M. Huang, J. Lin, Y. Li, and F. Yu, "Using Eggshell Membrane as a Separator in Supercapacitor", J. Power Sources, 206, 463 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.116
  17. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, and Y. Takasu, "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance", J. Phys. Chem. B, 109, 7330 (2005). https://doi.org/10.1021/jp044252o

피인용 문헌

  1. Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.293