References
- C.S. Yoon, J.M. Ko, M. Latifatu, H.S. Lee, Y.-G. Lee, K.M. Kim, J.H. Won, J. Jo, Y. Jang, and J.H. Kim, "Electrochemical Properties of Activated Carbon Supercapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte", Korean Chem. Eng. Res., 52, 553 (2014). https://doi.org/10.9713/kcer.2014.52.5.553
- M. Latifatu, J.M. Ko, Y.-G. Lee, K.M. Kim, J. Jo, Y. Jang, J.J. Yoo, and J.H. Kim, "Electrochemical Properties of Activated Carbon Supercapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte", Korean Chem. Eng. Res., 51, 550 (2013). https://doi.org/10.9713/kcer.2013.51.5.550
- Y. Nishiyama and M. Satoh, "Solvent- and Counterion- Specific Swelling Behavior of Poly(acrylic acid) Gels", J. Polym. Sci. Part B: Polym. Phys., 38, 2791 (2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2791::AID-POLB80>3.0.CO;2-1
- C. Iwakura, N. Furukawa, T. Ohnishi, K. Sakamoto, S. Nohara, and H. Inoue, "Nickel/Metal Hydride Cells Using an Alkaline Polymer Gel Electrolyte", Electrochemistry, 69, 659 (2001).
- C. Iwakura, S. Nohara, N. Furukawa, and H. Inoue, "The Possible Use of Polymer Gel Electrolytes in Nickel/Metal Hydride Battery", Solid State Ionics, 148, 487 (2002). https://doi.org/10.1016/S0167-2738(02)00092-9
- C. Iwakura, M. Horiguchi, S. Nohara, N. Furukawa, and H. Inoue, "Suppression of Electrolyte Creepage with Polymer Hydrogel Electrolyte for Nickel/Metal Hydride Batteries", J. Appl. Electrochem., 35, 293 (2005). https://doi.org/10.1007/s10800-004-6765-8
- C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue, and M. Morita, "New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte", Electrochem. Solid- State Lett., 6, A37 (2003). https://doi.org/10.1149/1.1535752
-
S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, and C. Iwakura, "Hybrid Capacitor with Activated Carbon Electrode,
$Ni(OH)_2$ Electrode and Polymer Hydrogel Electrolyte, J. Power Sources, 157, 605 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.024 - K.-T. Lee and N.-L. Wu, "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte", J. Power Sources, 179, 430 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
-
K.-T. Lee, J.-F. Lee, and N.-L. Wu, "Electrochemical Characterizations on
$MnO_2$ Supercapacitors with Potassium Polyacrylate and Potassium Polyacrylate-co- Polyacrylamide Gel Polymer Electrolytes", Electrochim. Acta, 54, 6148 (2009). https://doi.org/10.1016/j.electacta.2009.05.065 -
H.-S. Nam, N.-L. Wu, K.-T. Lee, K.M. Kim, C.G. Yeom, L.R. Hepowit, J.M. Ko, and J.-D. Kim, "Electrochemical Capacitances of a Nanowire-Structured
$MnO_2$ in Polyacrylate-Based Gel Electrolytes", J. Electrochem. Soc., 159, A899 (2012). https://doi.org/10.1149/2.112206jes -
K.M. Kim, J.H. Nam, Y.-G. Lee, W.I. Cho, and J.M. Ko, "Supercapacitive Properties of Electrodeposited
$RuO_2$ Electrode in Acrylic Gel Polymer Electrolytes", Curr. Appl. Phys., 13, 1702 (2013). https://doi.org/10.1016/j.cap.2013.06.016 - J.M. Ko, J.H. Nam, J.H. Won, and K.M. Kim, "Supercapacitive Properties of Electrodeposited Polyaniline Electrode in Acrylic Gel Polymer Electrolytes", Synth. Metals, 189, 152 (2014). https://doi.org/10.1016/j.synthmet.2014.01.011
- Y.M. Lee, J.-W. Kim, N.-S. Choi, J.A. Lee, W.-H. Seol, and J.-K. Park, "Novel Porous Separator Based on PVdF and PE Non-Woven Matrix for Rechargeable Lithium Batteries", J. Power Sources, 139, 235 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.055
- A. Sheidaei, X. Xiao, X. Huang, and J. Hitt, "Mechanical Behavior of a Battery Separator in Electrolyte Solutions", J. Power Sources, 196, 8728 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.026
- H. Yu, Q. Tang, J. Wu, Y. Lin, L. Fan, M. Huang, J. Lin, Y. Li, and F. Yu, "Using Eggshell Membrane as a Separator in Supercapacitor", J. Power Sources, 206, 463 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.116
- W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, and Y. Takasu, "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance", J. Phys. Chem. B, 109, 7330 (2005). https://doi.org/10.1021/jp044252o
Cited by
- Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.293