
The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 15, No. 5, pp.39-49, Oct. 31, 2015. pISSN 2289-0238, eISSN 2289-0246

- 39 -

http://dx.doi.org/10.7236/JIIBC.2015.15.5.39

JIIBC 2015-5-5

Pseudo Jacket Matrix and Its MIMO SVD Channel

Pseudo Jacket 행렬을 이용한 MIMO SVD Channel 
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요  약  Jacket Matrices: Construction and Its Application for Fast Cooperative Wireless signal Processing[27]

에 소개된 Jacket 행렬로부터 일반화된 의사 Jacket 행렬에 대한 특성과 생성에 관한 정리가 발표됐다. 본 논문에서는 

MIMO 채널과 같이 2x4, 3x6 같은 비정방 행렬에서의 의사 Jacket 역행렬에 대한 예제를 제안했다. 또한 의사 MIMO 

특이값 분해 (SVD, Singular Value Decomposition) channel을 추론하여 적용하였으며 안테나 어레이를 분할하여 추

정하는 채널을 기반으로 SVD를 활용하는데 적용하였다. 이것은 MIMO 채널 및 고유값 분해 (EVD, Eigen Value 

decomposition) 등에 사용할 수 있다.

Abstract  Some characters and construction theorems of Pseudo Jacket Matrix which is generalized from Jacket 
Matrix introduced by Jacket Matrices: Construction and Its Application for Fast Cooperative Wireless signal 
Processing[27] was announced. In this paper, we proposed some examples of Pseudo inverse Jacket matrix, such as 
2x4, 3x6 non-square matrix for the MIMO channel. Furthermore we derived MIMO singular value decomposition 
(SVD) pseudo inverse channel and developed application to utilize SVD based on channel estimation of partitioned 
antenna arrays. This can be also used in MIMO channel and eigen value decomposition (EVD).

Key Words : Jacket matrix, Pseudo Jacket Matrix, Pseudo inverse, element-wise inverse

*정회원, 대진대학교 컴퓨터공학과
**정회원, 숭실사이버대학교 컴퓨터정보통신학과
***정회원, 전북대학교 전자정보공학부(교신저자)
접수일자 : 2015년 8월 17일, 수정완료 2015년 9월 17일
게재확정일자 : 2015년 10월 9일

Received: 17 August, 2015 / Revised: 17 September, 2015 /
Accepted: 9 October, 2015 
***Corresponding Author: moonho@jbnu.ac.kr
Dept: Division of Electronic Engineering, Chonbuk National 
University

Ⅰ. Introduction

A MIDST numerous matrices that are being utilized 

in engineering applications[1][2][3], structured matrices 

such as Orthogonal[4], Hadamard[5], Conference[6], 

Toeplitz[7], Unitary[8], Circulant[9], Hankel[10], Jacket[11], 

etc. matrices play an important role in signal 

processing. Hadamard matrix and its generalizations 

are orthogonal matrices with many applications for 

signal sequence transform and data processing[12]. 

Hadamard transform and its generalizations such as 

weighted Hadamard transform have been used for 

audio and video coding because of the high practical 

value of these transformations for representing signal 

and images[13].

Jacket matrix, motivated by the center weighted 

Hadamard matrix with an inverse-constraint and 

introduced by Lee in 1989, is a class of matrices with 

their inverse matrices being determined by the 

element-wise of matrices[14]. They are closely related to 
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various famous mathematical objects such as Turyn 

and Butson type Hadamard matrices, orthogonal 

designs, etc., which have numerous applications to 

many mathematical and theoretical physics problems. 

The class of Jacket matrices contains the class of 

hadamard and complex Hadamard matrices
[15]. it has a 

large overlap, but does not coincide, with the class of 

generalized Hadamard matrices[16][17]. Especially, several 

interesting matrices, such as Hadamard matrix, Haar 

matrix, Fourier matrix and Slant matrix, belong to 

Jacket matrix family
[18][19]. Since the inverse matrix of 

Jacket matrix can be determined easily, Jacket matrix 

and its transforms have been extensively investigated 
[19][20][21]. In addition, Jacket matrix is related to many 

useful matrices, such as unitary matrices and 

Hermitian matrices that have been potentially applied in 

digital signal processing, wireless communications, 

cryptography, and so on[22][23][24][25][26].

But Jacket matrix requires it is a square matrix and 

has inverse matrix, and many matrices in practice can 

not satisfy these conditions. They are always matrix 

( )i j m nA a ×=  or not inverse. In this paper, we will 

generalize the definition of Jacket matrix to Pseudo 

Jacket Matrix, study the existence and its construction.

This paper is organized as follows, In Section Ⅱ, the 

definition of Pseudo Jacket Matrix and some examples 

are given. In Section Ⅲ, we will prove some 

construction Theorems of Pseudo Jacket Matrix. In 

Section Ⅳ, we derived MIMO SVD Pseudo Inverse 

Channel and it’s applications. Finally, conclusions are 

drawn in Section Ⅳ.

Ⅱ. The Definition of Pseudo Jacket 

Matrix

Jacket Matrix was introduced by Prof. Moon Ho 

Lee[27] as follows:

Definition 1: For a square matrix ( )i j n nA a ×= ，if 

its inverse matrix can obtained simply by an 

element-wise inverse, such as

1

1 ,    01 ( ' ) ;  '
0 ,       0

i jT
i ji j i j

i j

a
aA a a

c
a

−

⎧ ≠⎪= = ⎨
⎪ =⎩

where c  is a non-zero constant then, we call matrix 

( )ij n nA a ×=  as a jacket matrix, and if 0i ja ≠  for all 

1 i≤ , j n≤  then c n= .

There are many types of Jacket Matrix, such as 

Hadamard matrix
[28]，Sylvester-Hadamard Matrix of 

Rank 2 k [29], block Jacket matrix[30], etc., and many 

applications[27]. In this paper, we will extend Jacket 

Matrix to Pseudo Jacket Matrix which will have much 

more applications in engineering such as MIMO 

wireless communications, signal processing, quantum 

computations and image processing etc.

Definition 2: For a matrix ( )ij m nA a ×= , if its pseudo 

inverse matrix can obtained simply by an element-wise 

inverse, such as

1 , 01 ( ' ) ;   '
0, 0

ijT
ijij ij

ij

a
aA a a

c
a

+

⎧ ≠⎪= = ⎨
⎪ =⎩ (1)

where c  is a non-zero constant, and A +  satisfy:

( )
( )

T

T

A A A A
A A A A
A A A A
A A A A

+

+ + +

+ +

+ +

⎧ =
⎪ =⎪
⎨

=⎪
⎪ =⎩

(2)

then, we call matrix ( )ij m nA a ×=  as a pseudo jacket 

matrix.

Remark 1: In Definition 2, if 0ija ≠  for all 1 i m≤ ≤ , 

1 j n≤ ≤ , max( , )C mn= .

Remark 2: In Definition 2, for matrix ( )ij m nA a ×= ，if 

m n= , then 1A A+ −= , so the common (honest) Jacket 

matrix A  is also a pseudo Jacket matrix.

Are there pseudo Jacket matrices? We first see the 

following examples and theorems.

Example 1: Obviously, each zero matrix (0)m nO ×=  

is Pseudo Jacket Matrix, and (0)n mO +
×= .

Example   2: Obviously, the diagonal matrix
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1

2

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0 0

tm n

m n

σ
σ

σ
×

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

K K

K K

K K K K K K K

K K

K K

K K K K K K K

K K

where 0iσ ≠ , 1 i≤  is Pseudo Inverse Jacket Matrix, 

and

1

2

1 0 0 0 0

10 0 0 0

10 0 0 0

0 0 0 0 0

0 0 0 0 0

n m

t

n m

σ

σ

σ

+

×

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

K K

K K

K K K K K K K

K K

K K

K K K K K K K

K K

Example 3: Let 
1
1

A ⎛ ⎞
= ⎜ ⎟

⎝ ⎠ , we take ( )1 1 1
2

B = , then 

(i)

( )
1 11 1 1
1 12

A B A ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

     
1 1 1 11
1 1 1 12

A⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(ii)

( ) ( )
11 11 1 1 1
12 2

B A B ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 ( ) ( ) ( )1 12 1 1 1 1
4 2

B= = =

(iii)

( )
1 1( ) 1 1
1 2

T

TA B
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  
1 1 1 11 1
1 1 1 12 2

T

AB
⎛ ⎞⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

(iv)

( ) ( )
11 1( ) 1 1 1
12 2

T T
TB A

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

  ( )1 B A= =

So B A+=  and A  is a Pseudo Jacket Matrix.

Example 4: Symmetrically, matrix ( )1 1 1TA A= =  

is also a Pseudo Jacket Matrix and

1

11
12

A + ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

Ⅲ. The Construction of Pseudo 

Jacket Matrix

In this Section, we will prove some construction 

theorems of Pseudo Jacket Matrix, and find that many 

types of matrices belong to the set of Pseudo Jacket 

matrix. In fact, in a general way, we have the following 

construction theorems.

Theorem 1: The honest Jacket Matrix is also Pseudo 

Jacket Matrix.

Proof: For reversible square Jacket matrix 

( )i j n nA a ×= ， 1A A+ −=  and 1A −  is element-wise 

inverse, So matrix A is a Pseudo Jacket matrix.     

       ■

Theorem 2: For matrix

1

2 ,

n

a
a

A

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
(3)

if 
2 2 2
1 2 0na a a= = = ≠L , then matrix A  is a Pseudo 

Jacket Matrix.

Proof: As 0ia ≠  for all 1 i n≤ ≤ , we take 

1 2

1 1 1 1
m a x ( ,1) n

B
n a a a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
L

  1 2

1 1 1 1

nn a a a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

L

Then, we have

(i)

1 1

2 2

1 2

1 1 1 1

n

n n

a a
a a

ABA
n a a a

a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L
M M

1 1

2
1

2 2
2

1

1 2

1

11

1

n

n

n
n n

a a
a a

a
a a

a
a a

n
a

a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

M
L L L L

L
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1 1

2 21

n n

n a a
na a

A
n

na a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

M M

(ii)

1 1
1

2
2 2

1 1

1 1
1 1

1 1

T T

n

n n

a a
a
a

a aB A B
n n

a

a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

M
M M

 
( )2

1 2

1 1 1 1

n

n B
n a a a

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
L

(iii) As 
2 2 2
1 2 0na a a= = = ≠L , then 

2 2
i ja a= , we 

have

ji

j i

aa
a a

=

and

1

2

1 2

1 1 1 1( )

T

T

n

n

a
a

AB
n a a a

a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L
M

      

1 1

2

2 2

1

1 2

1

11

1

T

n

n

n n

a a
a a

a a
a a

n

a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L

L

L L L L

L

      

1 1

2

2 2

1

1 2

1

11

1

n

n

n n

a a
a a

a a
a a AB

n

a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

L L L L

L

(iv)

1

2

1 2

1 1 1 1( )

T

T

n

n

a
a

BA
n a a a

a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L
M

      ( )1 T B A= =

So B A+=  and A  is a Pseudo Jacket Matrix.  

         ■

Theorem 3: Symmetrically, for matrix

( )1 1 2 nA a a a= L

if 
2 2 2
1 2 0na a a= = = ≠L , then matrix 1A  is a Pseudo 

Jacket Matrix and

1

21

1

1
1

1

n

a

aA
n

a

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M

(4)

Theorem 4: Let A  is a Pseudo Jacket Matrix, 

matrix D  comes from exchanging two rows i  and j  
of A , then D  is also a Pseudo Jacket Matrix.

Proof: Let i jP  is the permutation matrix that comes 

from exchanging two rows i  and j  of identity matrix 

I , then

( )ij i j m n
D P A d

×
= =

and

1 T
ij ij ij ijP P P P+ −= = =

( )
1 , 01 ' ;  '
0, 0

T ij
ijij ij

ij

a
aA a a

c
a

+

⎧ ≠⎪= = ⎨
⎪ =⎩

We take

1 i jD A P+=

then

( )1

1 , 01 ' ;  '
0, 0

T ij
ijij ij

ij

d
dD d d

c
d

⎧ ≠⎪= = ⎨
⎪ =⎩

and

(i)

1 ij ij ij ijDD D P AA P P A P A D+= = =

(ii)

1 1 1ij ij ij ijD DD A P P AA P A P D+ + += = =

(iii)

( ) ( )1 1

TT
ij ijDD P AA P DD+= =
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(iv)

( ) ( )1 1 .
TT

ij ijD D A P P A D D+= =

So the matrix D  is a Pseudo Jacket Matrix.

       ■

Theorem 5: Symmetrically, let A  is a Pseudo Jacket 

Matrix, matrix D comes from exchanging two columns 

i  and j  of A , then D  is also a Pseudo Jacket 

Matrix.

Theorem 6:，Let 1 2
,m n m nA B× ×  are Pseudo Jacket 

Matrix, if A B B A+ += , B A A B+ =  and AB B A+ =  then 

matrix

1 2( )m m n

A
D

B
+ ×

⎛ ⎞
= ⎜ ⎟

⎝ ⎠ (5)

is also a Pseudo Matrix.

Proof: As 1 2
,m n m nA B× ×  are Pseudo Jacket Matrix, 

then

( )
1

1 , 01 ' ;  '
0, 0

T ij
ijij ij

ij

a
aA a a

c
a

+

⎧ ≠⎪= = ⎨
⎪ =⎩

and

( )
2

1 , 01 ' ;  '
0, 0

T ij
ijij ij

ij

b
bB b b

c
b

+

⎧ ≠⎪= = ⎨
⎪ =⎩

We take

( )1 1 2
1 2

1D c A c B
c c

+ +=
+

   
( )

1 2

1 '
T

ijd
c c

=
+ .

1 , 0
'

0 , 0

i j
i ji j

i j

d
dd

d

⎧ ≠⎪= ⎨
⎪ =⎩

1

2

, 1
, 1
ij

ij
ij

a i m
d

b i m
≤ ≤⎧

= ⎨ ≤ ≤⎩
then, we have

(i)

( )1 1 2
1 2

1A A
DDD c A c B

B Bc c
+ +⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

      

1 2

1 2 1 2

1 Ac AA c AB
Bc c c BA c BB

+ +

+ +

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

      

1 2

1 2 1 2

1 c AA A c AB B
c c c BA A c BB B

+ +

+ +

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

      

1 2

1 21 2

1 c A c A
D

c B c Bc c
+⎛ ⎞

= =⎜ ⎟++ ⎝ ⎠

(ii)

( )1 1 1 2
1 2

1 A
D DD c A c B

Bc c
+ + ⎛ ⎞

= ⎜ ⎟+ ⎝ ⎠

( )1 2
1 2

1 c A c B
c c

+ +

+

( )
( )( )1 2 1 22

1 2

1 c A A c BB c A c B
c c

+ + + += +
+

( )
( )2 2

1 1 2 1 2 22
1 2

1 c A c c A c c B c B
c c

+ + + += + +
+

( )1 2 1
1 2

1 c A c B D
c c

+ += =
+

(iii)

( ) ( )1 1 2
1 2

1
T

T A
DD c A c B

B c c
+ +⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

1 2
1

1 2 1 2

1
T

c A A c A B
D D

c c c B A c B B

+ +

+ +

⎛ ⎞
= =⎜ ⎟+ ⎝ ⎠

(iv)

( ) ( )1 1 2
1 2

1
T

T A
D D c A c B

Bc c
+ +⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

( )
( )1 2 12

1 2

1 .
T

c A A c BB D D
c c

+ += + =
+

So the matrix

1 2( )m m n

A
D

B
+ ×

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

is a Pseudo Jacket Matrix and

  
( )1 2

1 2

1 .D c A c B
c c

+ + +=
+        ■

Example 5: Let

1 1
1 1

A B ⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

are common Jacket Matrix and also Pseudo Jacket 

Matrix and
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1 1 1 11 .
1 12

A A B B+ − + − ⎛ ⎞
= = = = ⎜ ⎟−⎝ ⎠

Obviously,

;  ;  AB BA BA A B AB B A+ + + += = =

So, from Theorem 6, we have matrix

1 1
1 1
1 1
1 1

A
D

B

⎛ ⎞
⎜ ⎟−⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟−⎝ ⎠

is a Pseudo Jacket Matrix and the pseudo inverse 

1 1
1 1 1 1 1 11 1 .
1 1 1 1 1 14 4
1 1

T

D +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎛ ⎞⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟ − −⎝ ⎠
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

Theorem 7: Symmetrically, Let 1 2
,m n m nA B× ×  are 

Pseudo Jacket Matrix, if A B B A+ += , A AB B+ =  and 

B BA A+ =  then matrix

( )
1 2( )m n n

D A B
× +

= (6)

is also a Pseudo Matrix.

Theorem 8: For matrix

1

2

n

a
a

A

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

M

if 0ia =  or 
2
ia k= , k  is a constant, then matrix A  

is a Pseudo Jacket Matrix.

Proof: Based on Theorem 4, we can exchange the 

rows of matrix A  into matrix

1 1

0

0 0
,

t

B
b B

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

M

M

where 
2 2 2

1 2 0,tb b b= = = ≠L  and from Theorem 2, 1B  is 

a Pseudo Jacket Matrix. Let ( )10D B += , we have

(i)

( )1
1 1

0 0
0BDB B B

B B
+⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(ii)

( ) ( )1 1
1

0
0 0DBD B B D

B
+ +⎛ ⎞

= =⎜ ⎟
⎝ ⎠

(iii)

( ) ( )1
1

0
0

T
TB D B

B
+⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

     1 1

00
0

T

B D
B B +

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

(iv)

( ) ( )1
1

0
0 .

T
TDB B DB

B
+⎛ ⎞⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

So matrix

1

0
B

B
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

is a Pseudo Jacket Matrix, and ( )10D B B+ += = . So 

matrix A  is also a Pseudo Jacket Matrix.        ■

Theorem 9: Symmetrically, for matrix

( )1 2 ,nA a a a= L (7)

if 0ia =  or 
2
ia k= , k  is a constant, then matrix A  

is a Pseudo Jacket Matrix.

Are there any other types of Pseudo Jacket Matrix? 

We see the following theorems and examples.

Theorem 10: Let 

1 1
1 1

H ⎛ ⎞
= ⎜ ⎟−⎝ ⎠ (8)

is a honest Jacket Matrix, also a Pseudo Jacket Matrix, 

if ( )i j m nA a ×=  is a Pseudo Jacket Matrix then

2 2( )ij m n

A A
B H A b

A A ×

⎛ ⎞
= ⊗ = =⎜ ⎟−⎝ ⎠

is also a Pseudo Jacket Matrix.

Proof: As ( )i j m nA a ×=  is a Pseudo Jacket Matrix, 

then
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( )
1 , 01 ' ;  '
0, 0

T ij
ijij ij

ij

a
aA a a

c
a

+

⎧ ≠⎪= = ⎨
⎪ =⎩

We take

1 , 01 1 ( ' ) ;  '
2 2

0, 0

ijT
ijij ij

ij

bA A bD b b
cA A b

+ +

+ +

⎧ ≠⎛ ⎞ ⎪= = = ⎨⎜ ⎟−⎝ ⎠ ⎪ =⎩

then we have

(i)

1
2

A A A AA A
BDB

A A A AA A

+ +

+ +

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −−⎝ ⎠ ⎝ ⎠⎝ ⎠

2 01
2 0 2

A AAA
B

A AAA

+

+

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−− ⎝ ⎠⎝ ⎠

(ii)

1 1
2 2

A AA A A A
DBD

A AA A A A

+ + + +

+ + + +

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟−− −⎝ ⎠⎝ ⎠ ⎝ ⎠

2 01
4 0 2

A A A A
D

A A A A

+ + +

+ + +

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

(iii)

( ) 1
2

T
T A A A A

BD
A A A A

+ +

+ +

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

2 01
2 0 2

T
A A

BD
AA

+

+

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

(iv)

( ) 1
2

T
T A AA A

D B
A AA A

+ +

+ +

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−− ⎝ ⎠⎝ ⎠⎝ ⎠

  
2 01 .

2 0 2
A A

D B
A A

+

+

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

So matrix B H A= ⊗  is a Pseudo Jacket Matrix, 

and 

 
1
2
A A

B D
A A

+ +
+

+ +

⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

Example 6: Let

1
1

A ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

is a Pseudo Jacket Matrix and

1 1
1 1

H ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

is a honest Jacket Matrix then

1 1
1 1
1 1
1 1

B H A

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⊗ =
⎜ ⎟−
⎜ ⎟−⎝ ⎠

is a Pseudo Jacket Matrix.

Example 7: Let ( )1 1A =  is a Pseudo Jacket 

Matrix and

1 1
1 1

H ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

is a honest Jacket Matrix, then

1 1 1 1
1 1 1 1

B H A ⎛ ⎞
= ⊗ = ⎜ ⎟− −⎝ ⎠

is a Pseudo Jacket Matrix and

1 1
1 11
1 14
1 1

B D+

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟−
⎜ ⎟−⎝ ⎠

Further, we have the following theorem.

Theorem 11: Let

2

2

1 1 1
1
1

J ω ω
ω ω

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠ (9)

is a honest Jacket Matrix, also a Pseudo Jacket Matrix, 

where 
31,  1 .ω ω≠ =  if ( )i j m nA a ×=  is a Pseudo 

Jacket Matrix, then

2
3 3

2

( )ij m n

A A A
B J A A A A b

A A A
ω ω
ω ω

×

⎛ ⎞
⎜ ⎟= ⊗ = =⎜ ⎟
⎜ ⎟
⎝ ⎠

is also a Pseudo Jacket Matrix.

Proof: As ( )i j m nA a ×=  is a Pseudo Jacket Matrix 

then

( )
1 , 01 ' ;  '
0, 0

T ij
ijij ij

ij

a
aA a a

c
a

+

⎧ ≠⎪= = ⎨
⎪ =⎩

We take 

2

2

1 1 ( ' ) ;
3 3

T
ij

A A A
D A A A b

c
A A A

ω ω
ω ω

+ + +

+ + +

+ + +

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

1 , 0
'

0 , 0

i j
i ji j

i j

b
bb

b

⎧ ≠⎪= ⎨
⎪ =⎩
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then we have

(i)

Because 31,  1,ω ω≠ =  then we have 

21 0 ,ω ω+ + =  and

BDB

2 2 2

2 2 2

1
3

A A A A A A A A A
A A A A A A A A A
A A A A A A A A A

ω ω ω ω ω ω
ω ω ω ω ω ω

+ + +

+ + +

+ + +

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

2

2

3 0 0
1 0 3 0
3

0 0 3

AA A A A
AA A A A B

AA A A A
ω ω
ω ω

+

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(ii)

DBD

2 2 2

2 2 2

1 1
3 3

A A A A A A A A A
A A A A A A A A A
A A A A A A A A A

ω ω ω ω ω ω
ω ω ω ω ω ω

+ + + + + +

+ + + + + +

+ + + + + +

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

2

2

3 0 0
1 0 3 0
9

0 0 3

AA A A A
AA A A A D

AA A A A
ω ω
ω ω

+ + + +

+ + + +

+ + + +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

(iii)

( ) 2 2

2 2

1
3

T

T
A A A A A A

BD A A A A A A
A A A A A A

ω ω ω ω
ω ω ω ω

+ + +

+ + +

+ + +

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

3 0 0
1 0 3 0
3

0 0 3

T
AA

AA BD
AA

+

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

(iv)

( ) TD B

2 2

2 2

1
3

T
A A A A A A
A A A A A A
A A A A A A

ω ω ω ω
ω ω ω ω

+ + +

+ + +

+ + +

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

3 0 0
1 0 3 0 .
3

0 0 3

T
A A

A A DB
A A

+

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

So matrix B J A= ⊗  is a Pseudo Jacket Matrix, 

and

2

2

1
3

A A A
B D A A A

A A A
ω ω
ω ω

+ + +

+ + + +

+ + +

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠           ■

Example 8: Let ( )1 1A =  is a Pseudo Jacket 

Matrix, and

2

2

1 1 1
1
1

J ω ω
ω ω

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠ (10)

is a honest Jacket Matrix then

2 2

2 2

1 1 1 1 1 1
1 1
1 1

B J A ω ω ω ω
ω ω ω ω

⎛ ⎞
⎜ ⎟= ⊗ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

is a Pseudo Jacket Matrix and

2

2

2

2

1 1 1
1 1 1
11
16
1
1

B D
ω ω
ω ω
ω ω
ω ω

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Ⅳ. MIMO SVD Pseudo Inverse 

Channel

In the section, we derive MIMO SVD pseudo 

N NT R×∈ �H  inverse channel. The MIMO channel 

matrix is decomposed by the singular value 

decomposition (SVD), that is, we have

H=H UΣV (11)

where U and V  are unitary matrices, and Σ is a 
rectangular diagonal matrix with non-negative real 

elements which means the element-wise inverse Jacket 

matrix. The diagonal elements of Σ are the singular 
values of the channel matrix H , denoting by 

m in1 2, , , Nσ σ σL , where ( )min min ,T RN N N= . In case 

of min TN N= , SVD in Eq. (11) can be expressed as

  

min

min min min min

min

R

R

NH H H
N N N N N

N N
−

−

Σ

⎡ ⎤
⎡ ⎤= = =⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦U

Σ
UΣV U U V U Σ V

01442443
14243

H

, (12)
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where minNU  is composed of minN  left-singular 

vectors and m inNΣ  is a square matrix.  In case of 

min RN N= , SVD in Eq. (11) can be expressed as

min

min min min min

min

T

T

H

H
N H

N N N N NH
N N

−
−

⎡ ⎤
⎡ ⎤= =⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦Σ

V

V
H U Σ 0 UΣ V

V1442443
14243 . (13) 

where m inNV  is composed of minN  right-singular 

vectors.  Then we get eigenvalue decomposition,

H H H H= =HH UΣΣ U UΛU , (14)

where R

H
N=U U I  and N NR R×∈Λ �  is a 

diagonal matrix.

The transmitted signal vector is defined as

{ }HQ = E x x (15)

Then, the channel capacity of MIMO channel is 

expressed as

( ) 2tr
0

max log det
R

T

Hx
NQ N

T

EC
N N=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
I HQH

(16)

The channel capacity is given as

2
0

log det
R

Hx
N

T

EC
N N

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
I HH

(17)

Using the eigen decomposition H H=UΛUHH  and 

the identity ( ) ( )det detm m+ = +I AB I BA , where m n×∈ �A  

and , n m×∈ �B  the channel capacity in Equation (17) 

is expressed as 

2
0

2
0

2
1 0

log de t

log de t

log de t

R

R

R

Hx
N

T

x
N

T

r
x

N i
i T

EC
N N

E
N N

E
N N

λ
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

UΛU

Λ

I

I

I (18)

그림 1. SNR변화에 따른 MIMO 채널 용량
Fig. 1. MIMO channel capacity with SNR.

We can compute the capacity of the MIMO channel 

as SNR is varied, when CSI is not known at the 

transmitter side. Fig. 1 shows the channel capacity as 

varying the number of antennas. From Fig. 1 that the 

MIMO channel capacity improves with increasing the 

number of transmit and receive antennas.

Ⅴ. Conclusion

In this paper, we extended the definition of Jacket 

Matrix to Pseudo Inverse Jacket Matrix, proved some 

construction theorems of Pseudo Inverse Jacket Matrix, 

and presented some examples of Pseudo Inverse Jacket 

matrix. Furthermore we derived MIMO SVD pseudo 

inverse channel and developed application. We discuss 

mainly research the applications of Pseudo Inverse 

Jacket Matrix in many subjects, as MIMO Channel, 

SVD, and EVD decomposition.
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