DOI QR코드

DOI QR Code

Peptidoglycan Up-Regulates CXCL8 Expression via Multiple Pathways in Monocytes/Macrophages

  • Lee, Chung Won (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital) ;
  • Chung, Sung Woon (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital) ;
  • Bae, Mi Ju (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital) ;
  • Song, Seunghwan (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital) ;
  • Kim, Sang-pil (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital) ;
  • Kim, Koanhoi (Department of Pharmacology, Pusan National University - School of Medicine)
  • Received : 2015.05.07
  • Accepted : 2015.07.24
  • Published : 2015.11.01

Abstract

Peptidoglycan (PG), the gram positive bacterial pathogen-associated molecular patterns (PAMP), is detected in a high proportion in macrophage-rich atheromatous regions, and expression of chemokine CXCL8, which triggers monocyte arrest on early atherosclerotic endothelium, is elevated in monocytes/ macrophages in human atherosclerotic lesion. The aim of this study was to investigate whether PG induced CXCL8 expression in the cell type and to determine cellular signaling pathways involved in that process. Exposure of THP-1 cell, human monocyte/macrophage cell line, to PG not only enhanced CXCL8 release but also profoundly induced il8 gene transcription. PG-induced release of CXCL8 and induction of il8 gene transcription were blocked by OxPAPC, an inhibitor of TLR-2/4 and TLR4, but not by polymyxin B, an inhibitor of LPS. PG-mediated CXCL8 release was significantly attenuated by inhibitors of PI3K-Akt-mTOR pathways. PKC inhibitors, MAPK inhibitors, and ROS quenchers also significantly attenuated expression of CXCL8. The present study proposes that PG contributes to inflammatory reaction and progression of atherosclerosis by inducing CXCL8 expression in monocytes/macrophages, and that TLR-2, PI3K-Akt-mTOR, PKC, ROS, and MAPK are actively involved in the process.

Keywords

References

  1. Asehnoune, K., Strassheim, D., Mitra, S., Kim, J. Y. and Abraham, E. (2005) Involvement of PKC${\alpha}$/${\beta}$ in TLR4 and TLR2 dependent activation of NF-${\kappa}B$. Cell. Signal. 17, 385-394. https://doi.org/10.1016/j.cellsig.2004.08.005
  2. Boisvert, W. A., Santiago, R., Curtiss, L. K. and Terkeltaub, R. A. (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest. 101, 353-363. https://doi.org/10.1172/JCI1195
  3. Corradetti, M. and Guan, K. (2006) Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25, 6347-6360. https://doi.org/10.1038/sj.onc.1209885
  4. Dobrina, A., Nardon, E., Vecile, E., Cinco, M. and Patriarca, P. (1995) Leptospira icterohemorrhagiae and leptospire peptidolgycans induce endothelial cell adhesiveness for polymorphonuclear leukocytes. Infect. Immun. 63, 2995-2999.
  5. Ha, T., Hu, Y., Liu, L., Lu, C., McMullen, J. R., Kelley, J., Kao, R. L., Williams, D. L., Gao, X. and Li, C. (2010) TLR2 ligands induce cardioprotection against ischaemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Cardiovasc. Res. 87, 694-703. https://doi.org/10.1093/cvr/cvq116
  6. Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N. and Hay, N. (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081-32089. https://doi.org/10.1074/jbc.M502876200
  7. Heo, W., Kim, S., Eo, S., Rhim, B. and Kim, K. (2014) FSL-1, a toll-like receptor 2/6 agonist, induces expression of interleukin-1${\alpha}$ in the presence of 27-hydroxycholesterol. Korea J. Physiol. Pharmacol. 18, 475-480. https://doi.org/10.4196/kjpp.2014.18.6.475
  8. Huo, Y., Weber, C., Forlow, S. B., Sperandio, M., Thatte, J., Mack, M., Jung, S., Littman, D. R. and Ley, K. (2001) The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J. Clin. Invest. 108, 1307-1314. https://doi.org/10.1172/JCI12877
  9. Inoue, T., Komoda, H., Nonaka, M., Kameda, M., Uchida, T. and Node, K. (2008) Interleukin-8 as an independent predictor of long-term clinical outcome in patients with coronary artery disease. Int. J. Cardiol. 124, 319-325. https://doi.org/10.1016/j.ijcard.2007.02.012
  10. Kawai, T. and Akira, S. (2006) TLR signaling. Cell Death Differ. 13, 816-825. https://doi.org/10.1038/sj.cdd.4401850
  11. Laman, J. D., Schoneveld, A. H., Moll, F. L., van Meurs, M. and Pasterkamp, G. (2002) Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am. J. Cardiol. 90, 119-123. https://doi.org/10.1016/S0002-9149(02)02432-3
  12. Langer, M., Malykhin, A., Maeda, K., Chakrabarty, K., Williamson, K. S., Feasley, C. L., West, C. M., Metcalf, J. P. and Coggeshall, K. M. (2008) Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PLoS One. 3, e3706. https://doi.org/10.1371/journal.pone.0003706
  13. Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868-874. https://doi.org/10.1038/nature01323
  14. Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  15. Moreau, M., Brocheriou, I., Petit, L., Ninio, E., Chapman, M. J. and Rouis, M. (1999) Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation 99, 420-426. https://doi.org/10.1161/01.CIR.99.3.420
  16. Nijhuis, M. M., Pasterkamp, G., Sluis, N. I., de Kleijn, D. P., Laman, J. D. and Ulfman, L. H. (2007) Peptidoglycan increases firm adhesion of monocytes under flow conditions and primes monocyte chemotaxis. J. Vasc. Res. 44, 214-222. https://doi.org/10.1159/000100420
  17. Parekh, D. B., Ziegler, W. and Parker, P. J. (2000) Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496-503. https://doi.org/10.1093/emboj/19.4.496
  18. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B., Karandikar, M., Berman, K. and Cobb, M. H. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183.
  19. Peveri, P., Walz, A., Dewald, B. and Baggiolini, M. (1988) A novel neutrophil-activating factor produced by human mononuclear phagocytes. J. Exp. Med. 167, 1547-1559. https://doi.org/10.1084/jem.167.5.1547
  20. Saetre, T., Kahler, H., Foster, S. and Lyberg, T. (2000) Peptidoglycan and lipoteichoic acid, components of the streptococcal cell wall, have marked and differential effects on adhesion molecule expression and the production of reactive oxygen species in human whole blood leukocytes. Scand. J. Clin. Lab. Invest. 60, 311-322. https://doi.org/10.1080/003655100750046477
  21. Schrijver, I. A., Melief, M. J., Eulderink, F., Hazenberg, M. P. and Laman, J. D. (1999) Bacterial peptidoglycan polysaccharides in sterile human spleen induce proinflammatory cytokine production by human blood cells. J. Infect. Dis. 179, 1459-1468. https://doi.org/10.1086/314761
  22. Schroder, J. M. and Christophers, E. (1989) Secretion of novel and homologous neutrophil-activating peptides by LPS-stimulated human endothelial cells. J. Immunol. 142, 244-251.
  23. Shaw, R. J. and Cantley, L. C. (2006) Ras, PI (3) K and mTOR signalling controls tumour cell growth. Nature 441, 424-430. https://doi.org/10.1038/nature04869
  24. Shin, D., Yang, C., Lee, J., Lee, S. J., Choi, H., Lee, H., Yuk, J., Harding, C. V. and Jo, E. (2008) Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C${\zeta}$ in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell. Microbiol. 10, 1893-1905. https://doi.org/10.1111/j.1462-5822.2008.01179.x
  25. Song, M. and Phelps, D. S. (2000) Comparison of SP-A and LPS effects on the THP-1 monocytic cell line. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L110-117. https://doi.org/10.1152/ajplung.2000.279.1.L110
  26. Torres, M. (2003) Mitogen-activated protein kinase pathways in redox signaling. Front. Biosci. 8, d369-391. https://doi.org/10.2741/999
  27. Tzeng, J., Chen, B., Chang, H., Wang, J., Sureshbabu, M., Chien, M., Hsu, M., Bien, M., Chiu, W. and Hong, C. (2010) Involvement of phosphatidylcholine-phospholipase C and protein kinase C in peptidoglycan-induced nuclear factor-${\kappa}B$ activation and cyclooxygenase-2 expression in RAW 264.7 macrophages. Pharmacol. Res. 61, 162-166. https://doi.org/10.1016/j.phrs.2009.09.005
  28. Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501. https://doi.org/10.1038/nrc839
  29. Wang, Z. M., Liu, C. and Dziarski, R. (2000) Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J. Biol. Chem. 275, 20260-20267. https://doi.org/10.1074/jbc.M909168199
  30. Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1-5.
  31. Yue, T. L., Wang, X., Sung, C. P., Olson, B., McKenna, P. J., Gu, J. L. and Feuerstein, G. Z. (1994) Interleukin-8. A mitogen and chemoattractant for vascular smooth muscle cells. Circ. Res. 75, 1-7. https://doi.org/10.1161/01.RES.75.1.1
  32. Zernecke, A., Shagdarsuren, E. and Weber, C. (2008) Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol. 28, 1897-1908. https://doi.org/10.1161/ATVBAHA.107.161174

Cited by

  1. Syk Plays a Critical Role in the Expression and Activation of IRAK1 in LPS-Treated Macrophages vol.2017, 2017, https://doi.org/10.1155/2017/1506248
  2. TLR-2 Recognizes Propionibacterium acnes CAMP Factor 1 from Highly Inflammatory Strains vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0167237
  3. Insulin as a Potent Stimulator of Akt, ERK and Inhibin-βE Signaling in Osteoblast-Like UMR-106 Cells vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.030
  4. AKT-targeted anti-inflammatory activity of the methanol extract of Chrysanthemum indicum var. albescens vol.201, 2017, https://doi.org/10.1016/j.jep.2017.03.001
  5. Commensal Staphylococcus aureus Provokes Immunity to Protect against Skin Infection of Methicillin-Resistant Staphylococcus aureus vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051290
  6. Peptidoglycan induces bradykinin receptor 1 expression through Toll-like receptor 2 and NF-κB signaling pathway in human nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26553
  7. Expression of long pentraxin 3 in human nasal mucosa fibroblasts, tissues, and secretions of chronic rhinosinusitis without nasal polyps vol.98, pp.5, 2020, https://doi.org/10.1007/s00109-020-01899-7
  8. Role of PI3K in the Progression and Regression of Atherosclerosis vol.12, pp.None, 2015, https://doi.org/10.3389/fphar.2021.632378