DOI QR코드

DOI QR Code

Lipid A as a Drug Target and Therapeutic Molecule

  • Joo, Sang Hoon (Laboratory of Biochemistry, College of Pharmacy, Catholic University of Daegu)
  • 투고 : 2015.08.02
  • 심사 : 2015.10.05
  • 발행 : 2015.11.01

초록

In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.

키워드

참고문헌

  1. Austin, E. A., Graves, J. F., Hite, L. A., Parker, C. T. and Schnaitman, C. A. (1990) Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus. J. Bacteriol. 172, 5312-5325. https://doi.org/10.1128/jb.172.9.5312-5325.1990
  2. Babinski, K., Kanjilal, S. and Raetz, C. (2002a) Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J. Biol. Chem. 277, 25947-25956. https://doi.org/10.1074/jbc.M204068200
  3. Babinski, K., Ribeiro, A. and Raetz, C. (2002b) The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J. Biol. Chem. 277, 25937-25946. https://doi.org/10.1074/jbc.M204067200
  4. Benson, R. E., Gottlin, E. B., Christensen, D. J. and Hamilton, P. T. (2003) Intracellular expression of peptide fusions for demonstration of protein essentiality in bacteria. Antimicrob. Chemother. 47, 2875-2881. https://doi.org/10.1128/AAC.47.9.2875-2881.2003
  5. Beutler, B. and Cerami, A. (1988) Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu. Rev. Biochem. 57, 505-518. https://doi.org/10.1146/annurev.bi.57.070188.002445
  6. Brade, H. (1999) Endotoxin in health and disease. Marcel Dekker, New York.
  7. Carty, S., Sreekumar, K. and Raetz, C. (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J. Biol. Chem. 274, 9677-9685. https://doi.org/10.1074/jbc.274.14.9677
  8. Christ, W. J., Asano, O., Robidoux, A. L., Perez, M., Wang, Y., Dubuc, G. R., Gavin, W. E., Hawkins, L. D., McGuinness, P. D., Mullarkey, M. A. and et al. (1995) E5531, a pure endotoxin antagonist of high potency. Science 268, 80-83. https://doi.org/10.1126/science.7701344
  9. Clementz, T., Zhou, Z. and Raetz, C. (1997) Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J. Biol. Chem. 272, 10353-10360. https://doi.org/10.1074/jbc.272.16.10353
  10. Crowell, D. N., Anderson, M. S. and Raetz, C. R. (1986) Molecular cloning of the genes for lipid A disaccharide synthase and UDP-Nacetylglucosamine acyltransferase in Escherichia coli. J. Bacteriol. 168, 152-159. https://doi.org/10.1128/jb.168.1.152-159.1986
  11. Danner, R. L., Joiner, K. A. and Parrillo, J. E. (1987) Inhibition of endotoxin-induced priming of human neutrophils by lipid X and 3-Azalipid X. J. Clin. Invest. 80, 605-612. https://doi.org/10.1172/JCI113112
  12. Dotson, G., Kaltashov, I., Cotter, R. and Raetz, C. (1998) Expression cloning of a Pseudomonas gene encoding a hydroxydecanoyl-acyl carrier protein-dependent UDP-GlcNAc acyltransferase. J. Bacteriol. 180, 330-337.
  13. Galloway, S. M. and Raetz, C. R. (1990) A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J. Biol. Chem. 265, 6394-6402.
  14. Garrett, T., Kadrmas, J. and Raetz, C. (1997) Identification of the gene encoding the Escherichia coli lipid A 4'-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J. Biol. Chem. 272, 21855-21864. https://doi.org/10.1074/jbc.272.35.21855
  15. Gibbons, H., Lin, S., Cotter, R. and Raetz, C. (2000) Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, A new Fe2+/alpha-ketoglutarate-dependent dioxygenase homologue. J. Biol. Chem. 275, 32940-32949. https://doi.org/10.1074/jbc.M005779200
  16. Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K. and Raetz, C. R. (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490-19498.
  17. Imoto, M., Kusumoto, S., Shiba, T., Naoki, H., Iwashita, T., Rietschel, E. T., Wollenweber, H. W., Galanos, C. and L?deritz, O. (1983) Chemical structure of E. coli Lipid A: Linkage site of acyl groups in the disaccharide backbone. Tetrahedron Lett 24, 4017-4020. https://doi.org/10.1016/S0040-4039(00)88251-9
  18. Jackman, J., Fierke, C., Tumey, L., Pirrung, M., Uchiyama, T., Tahir, S., Hindsgaul, O. and Raetz, C. (2000) Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J. Biol. Chem. 275, 11002-11009. https://doi.org/10.1074/jbc.275.15.11002
  19. Jackman, J., Raetz, C. and Fierke, C. (1999) UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38, 1902-1911. https://doi.org/10.1021/bi982339s
  20. Jenkins, R. J. and Dotson, G. D. (2012) A continuous fluorescent enzyme assay for early steps of lipid A biosynthesis. Anal. Biochem. 425, 21-27. https://doi.org/10.1016/j.ab.2012.02.027
  21. Kong, Q., Six, D. A., Roland, K. L., Liu, Q., Gu, L., Reynolds, C. M., Wang, X., Raetz, C. R. and Curtiss, R., 3rd (2011) Salmonella synthesizing 1-dephosphorylated [corrected] lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J. Immunol. 187, 412-423. https://doi.org/10.4049/jimmunol.1100339
  22. Lee, B. I. and Suh, S. W. (2003) Crystal structure of UDP-N-acetylglucosamine acyltransferase from Helicobacter pylori. Proteins 53, 772-774. https://doi.org/10.1002/prot.10436
  23. Liang, X., Lee, C. J., Zhao, J., Toone, E. J. and Zhou, P. (2013) Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J. Med. Chem. 56, 6954-6966. https://doi.org/10.1021/jm4007774
  24. McClerren, A., Endsley, S., Bowman, J., Andersen, N., Guan, Z., Rudolph, J. and Raetz, C. (2005) A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry 44, 16574-16583. https://doi.org/10.1021/bi0518186
  25. Metzger, L. E. 4th and Raetz, C. R. (2010) An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis. Biochemistry 49, 6715-6726. https://doi.org/10.1021/bi1008744
  26. Moffatt, J. H., Harper, M., Adler, B., Nation, R. L., Li, J. and Boyce, J. D. (2011) Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3022-3024. https://doi.org/10.1128/AAC.01732-10
  27. Montminy, S. W., Khan, N., McGrath, S., Walkowicz, M. J., Sharp, F., Conlon, J. E., Fukase, K., Kusumoto, S., Sweet, C., Miyake, K., Akira, S., Cotter, R. J., Goguen, J. D. and Lien, E. (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat. immunol. 7, 1066-1073. https://doi.org/10.1038/ni1386
  28. Nishijima, M. and Raetz, C. R. (1979) Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for phosphatidylglycerophosphate synthetase and construction of mutants lacking phosphatidylglycerol. J. Biol. Chem. 254, 7837-7844.
  29. Ohto, U., Fukase, K., Miyake, K. and Shimizu, T. (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc. Natl. Acad Sci. U.S.A. 109, 7421-7426. https://doi.org/10.1073/pnas.1201193109
  30. Onishi, H. R., Pelak, B. A., Gerckens, L. S., Silver, L. L., Kahan, F. M., Chen, M. H., Patchett, A. A., Galloway, S. M., Hyland, S. A., Anderson, M. S. and Raetz, C. R. (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science 274, 980-982. https://doi.org/10.1126/science.274.5289.980
  31. Opal, S. M., Laterre, P. F., Francois, B., LaRosa, S. P., Angus, D. C., Mira, J. P., Wittebole, X., Dugernier, T., Perrotin, D., Tidswell, M., Jauregui, L., Krell, K., Pachl, J., Takahashi, T., Peckelsen, C., Cordasco, E., Chang, C. S., Oeyen, S., Aikawa, N., Maruyama, T., Schein, R., Kalil, A. C., Van Nuffelen, M., Lynn, M., Rossignol, D. P., Gogate, J., Roberts, M. B., Wheeler, J. L., Vincent, J. L. and Group, A. S. (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309, 1154-1162. https://doi.org/10.1001/jama.2013.2194
  32. Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H. and Lee, J. O. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-1195. https://doi.org/10.1038/nature07830
  33. Patel, M. C., Shirey, K. A., Pletneva, L. M., Boukhvalova, M. S., Garzino-Demo, A., Vogel, S. N. and Blanco, J. C. (2014) Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol. 9, 811-829. https://doi.org/10.2217/fvl.14.70
  34. Persing, D. H., Coler, R. N., Lacy, M. J., Johnson, D. A., Baldridge, J. R., Hershberg, R. M. and Reed, S. G. (2002) Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32-37. https://doi.org/10.1016/S0966-842X(02)02426-5
  35. Pirrung, M. C., Tumey, L. N., McClerren, A. L. and Raetz, C. R. (2003) High-throughput catch-and-release synthesis of oxazoline hydroxamates. Structure-activity relationships in novel inhibitors of Escherichia coli LpxC: in vitro enzyme inhibition and antibacterial properties. J. Am. Chem. Soc. 125, 1575-1586. https://doi.org/10.1021/ja0209114
  36. Pohlman, T. H., Winn, R. K., Callahan, K. S., Maier, R. V. and Harlan, J. M. (1988) A glycolipid precursor of bacterial lipopolysaccharide (lipid X) lacks activity against endothelial cells in vitro and is not toxic in vivo. J. Surg. Res. 45, 228-237. https://doi.org/10.1016/0022-4804(88)90069-8
  37. Raetz, C., Reynolds, C., Trent, M. and Bishop, R. (2007) Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76, 295-329. https://doi.org/10.1146/annurev.biochem.76.010307.145803
  38. Raetz, C. and Whitfield, C. (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  39. Reynolds, C., Ribeiro, A., McGrath, S., Cotter, R., Raetz, C. and Trent, M. (2006) An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3'-acyloxyacyl moiety of lipid A. J. Biol. Chem. 281, 21974-21987. https://doi.org/10.1074/jbc.M603527200
  40. Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U., Di Padova, F. and et al. (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8, 217-225. https://doi.org/10.1096/fasebj.8.2.8119492
  41. Robins, L. I., Williams, A. H. and Raetz, C. R. (2009) Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 48, 6191-6201. https://doi.org/10.1021/bi900629e
  42. Shirey, K. A., Lai, W., Scott, A. J., Lipsky, M., Mistry, P., Pletneva, L. M., Karp, C. L., McAlees, J., Gioannini, T. L., Weiss, J., Chen, W. H., Ernst, R. K., Rossignol, D. P., Gusovsky, F., Blanco, J. C. and Vogel, S. N. (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497, 498-502. https://doi.org/10.1038/nature12118
  43. Steeghs, L., den Hartog, R., den Boer, A., Zomer, B., Roholl, P. and van der Ley, P. (1998) Meningitis bacterium is viable without endotoxin. Nature 392, 449-450. https://doi.org/10.1038/33046
  44. Strain, S. M., Fesik, S. W. and Armitage, I. M. (1983) Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by 13C and 31P nuclear magnetic resonance. J. Biol. Chem. 258, 13466-13477.
  45. Sweet, C., Lin, S., Cotter, R. and Raetz, C. (2001) A Chlamydia trachomatis UDP-N-acetylglucosamine acyltransferase selective for myristoyl-acyl carrier protein. Expression in Escherichia coli and formation of hybrid lipid A species. J. Biol. Chem. 276, 19565-19574. https://doi.org/10.1074/jbc.M101868200
  46. Takayama, K., Qureshi, N., Mascagni, P., Nashed, M. A., Anderson, L. and Raetz, C. R. (1983) Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. Complete structure of A diacyl GlcN-1-P found in a phosphatidylglycerol-deficient mutant. J. Biol. Chem. 258, 7379-7385.
  47. Trent, M., Ribeiro, A., Doerrler, W., Lin, S., Cotter, R. and Raetz, C. (2001) Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J. Biol. Chem. 276, 43132-43144. https://doi.org/10.1074/jbc.M106962200
  48. Vorachek-Warren, M., Ramirez, S., Cotter, R. and Raetz, C. (2002) A triple mutant of Escherichia coli lacking secondary acyl chains on lipid A. J. Biol. Chem. 277, 14194-14205. https://doi.org/10.1074/jbc.M200409200
  49. Vuorio, R. and Vaara, M. (1995) Comparison of the phenotypes of the lpxA and lpxD mutants of Escherichia coli. FEMS Microbiol. Lett. 134, 227-232. https://doi.org/10.1111/j.1574-6968.1995.tb07942.x
  50. Wang, S., Kong, Q. and Curtiss, R., 3rd (2013) New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb. Pathog. 58, 17-28. https://doi.org/10.1016/j.micpath.2012.10.006
  51. Wang, X., Karbarz, M., McGrath, S., Cotter, R. and Raetz, C. (2004) MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli. J. Biol. Chem. 279, 49470-49478. https://doi.org/10.1074/jbc.M409078200
  52. Wang, X., McGrath, S., Cotter, R. and Raetz, C. (2006a) Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4'-phosphatase LpxF. J. Biol. Chem. 281, 9321-9330. https://doi.org/10.1074/jbc.M600435200
  53. Wang, X., Ribeiro, A., Guan, Z., McGrath, S., Cotter, R. and Raetz, C. (2006b) Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45, 14427-14440. https://doi.org/10.1021/bi061767s
  54. White, K., Kaltashov, I., Cotter, R. and Raetz, C. (1997) A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae. J. Biol. Chem. 272, 16555-16563. https://doi.org/10.1074/jbc.272.26.16555
  55. Wyckoff, T., Lin, S., Cotter, R., Dotson, G. and Raetz, C. (1998) Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J. Biol. Chem. 273, 32369-32372. https://doi.org/10.1074/jbc.273.49.32369

피인용 문헌

  1. Functionalized lipids and surfactants for specific applications vol.1858, pp.10, 2016, https://doi.org/10.1016/j.bbamem.2016.02.038
  2. Antivirals against animal viruses vol.133, 2017, https://doi.org/10.1016/j.bcp.2016.09.029
  3. Tandem mass spectrometry determination of the putative structure of a heterogeneous mixture of Lipid Asisolated from the lipopolysaccharide of the Gram-negative bacteriaAeromonas liquefaciensSJ-19a vol.30, pp.8, 2016, https://doi.org/10.1002/rcm.7540
  4. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-28916-7
  5. Detection of Endotoxins: From Inferring the Responses of Biological Hosts to the Direct Chemical Analysis of Lipopolysaccharides vol.49, pp.2, 2015, https://doi.org/10.1080/10408347.2018.1479958
  6. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-51844-z
  7. Network-Based Metabolism-Centered Screening of Potential Drug Targets in Klebsiella pneumoniae at Genome Scale vol.9, pp.None, 2015, https://doi.org/10.3389/fcimb.2019.00447
  8. Essential Genes of Vibrio anguillarum and Other Vibrio spp. Guide the Development of New Drugs and Vaccines vol.12, pp.None, 2015, https://doi.org/10.3389/fmicb.2021.755801
  9. Chemical Highlights Supporting the Role of Lipid A in Efficient Biological Adaptation of Gram-Negative Bacteria to External Stresses vol.64, pp.4, 2015, https://doi.org/10.1021/acs.jmedchem.0c02185
  10. Functions predict horizontal gene transfer and the emergence of antibiotic resistance vol.7, pp.43, 2015, https://doi.org/10.1126/sciadv.abj5056