DOI QR코드

DOI QR Code

Aberrant Methylation of RASSF1A gene Contribute to the Risk of Renal Cell Carcinoma: a Meta-Analysis

  • Yu, Gan-Shen (Department of Urology, The First Affiliated Hospital of JINAN University) ;
  • Lai, Cai-Yong (Department of Urology, The First Affiliated Hospital of JINAN University) ;
  • Xu, Yin (Department of Urology, The First Affiliated Hospital of JINAN University) ;
  • Bu, Chen-Feng (Department of Urology, The First Affiliated Hospital of JINAN University) ;
  • Su, Ze-Xuan (Department of Urology, The First Affiliated Hospital of JINAN University)
  • Published : 2015.06.26

Abstract

The aim of this study was to assess the diagnostic value of RASSF1A methylation in renal cell carcinoma. Systematically search were performed using the Pubmed, ProQest and Web of Science for all articles on the association between RASSF1A methylation and renal cell carcinoma before 15 April 2015. After the filtration, 13 studies involving 677 cases and 497 controls met our criteria. Our meta-analysis suggested that hypermethylation of RASSF1A gene was associated with the increased risk of RCC(OR:4.14, 95%CI:1.06-16.1). Stratified analyses showed a similar risk in qualitative detection method(OR:28.4, 95%CI:10.2-79.6), body fluid sample(OR:12.8, 95%CI:5.35-30.8), and American(OR:10.5, 95%CI:1.97-55.9). Our result identified that RASSF1A methylation had a strong potential in prediction the risk of Renal cell carcinoma.

Keywords

References

  1. Agathanggelou A, Cooper WN, Latif F (2005). Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res, 65, 3497-508. https://doi.org/10.1158/0008-5472.CAN-04-4088
  2. Asiaf A, Ahmad ST, Aziz SA, et al (2014). Loss of expression and aberrant methylation of the CDH1 (E-cadherin) gene in breast cancer patients from Kashmir. Asian Pac J Cancer Prev, 15, 6397-403. https://doi.org/10.7314/APJCP.2014.15.15.6397
  3. Battagli C, Uzzo RG, Dulaimi E, et al (2003). Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res, 63, 8695-9.
  4. Braga E, Pugacheva E, Bazov I, et al (1999). Comparative allelotyping of the short arm of human chromosome 3 in epithelial tumors of four different types. FEBS Lett, 454, 215-9. https://doi.org/10.1016/S0014-5793(99)00807-8
  5. Cancer Genome Atlas Research N (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43-9. https://doi.org/10.1038/nature12222
  6. Cooper CS, Eeles R, Wedge DC, et al (2015). Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet, 47, 367-72. https://doi.org/10.1038/ng.3221
  7. Costa VL, Henrique R, Ribeiro FR, et al (2007). Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. Bmc Cancer, 7, 133. https://doi.org/10.1186/1471-2407-7-133
  8. Dammann R, Li C, Yoon JH, et al (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet, 25, 315-9. https://doi.org/10.1038/77083
  9. Dreijerink K, Braga E, Kuzmin I, et al (2001). The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 7504-9. https://doi.org/10.1073/pnas.131216298
  10. Dulaimi E, Ibanez de Caceres I, Uzzo RG, et al (2004). Promoter hypermethylation profile of kidney cancer. Clin Cancer Res, 10, 3972-9. https://doi.org/10.1158/1078-0432.CCR-04-0175
  11. Eads CA, Danenberg KD, Kawakami K, et al (2000). MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res, 28, E32. https://doi.org/10.1093/nar/28.8.e32
  12. Ellinger J, Holl D, Nuhn P, et al (2011). DNA hypermethylation in papillary renal cell carcinoma. BJU Int, 107, 664-9. https://doi.org/10.1111/j.1464-410X.2010.09468.x
  13. Fang J, Zhang H, Jin S (2014). Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol, 35, 5083-93. https://doi.org/10.1007/s13277-014-1737-z
  14. Feng L, Li J, Yan LD, et al (2014). RASSF1A suppresses proliferation of cervical cancer cells. Asian Pac J Cancer Prev, 15, 5917-20. https://doi.org/10.7314/APJCP.2014.15.14.5917
  15. Gonzalgo ML, Yegnasubramanian S, Yan G, et al (2004). Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin Cancer Res, 10, 7276-83. https://doi.org/10.1158/1078-0432.CCR-03-0692
  16. Hauser S, Zahalka T, Fechner G, et al (2013). Serum DNA hypermethylation in patients with kidney cancer: results of a prospective study. Anticancer Res, 33, 4651-6.
  17. Hoque MO, Begum S, Topaloglu O, et al (2004). Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res, 64, 5511-7. https://doi.org/10.1158/0008-5472.CAN-04-0799
  18. Lam JS, Leppert JT, Belldegrun AS, et al (2005). Novel approaches in the therapy of metastatic renal cell carcinoma. World J Urol, 23, 202-12. https://doi.org/10.1007/s00345-004-0466-0
  19. Li W, Deng J, Tang JX (2014). Combined effects methylation of FHIT, RASSF1A and RARbeta genes on non-small cell lung cancer in the Chinese population. Asian Pac J Cancer Prev, 15, 5233-7. https://doi.org/10.7314/APJCP.2014.15.13.5233
  20. Lubinski J, Hadaczek P, Podolski J, et al (1994). Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinomas. Cancer Res, 54, 3710-3.
  21. Morrissey C, Martinez A, Zatyka M, et al (2001). Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res, 61, 7277-81.
  22. Ohtani-Fujita N, Fujita T, Aoike A, et al (1993). CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene, 8, 1063-7.
  23. Peters I, Rehmet K, Wilke N, et al (2007). RASSF1A promoter methylation and expression analysis in normal and neoplastic kidney indicates a role in early tumorigenesis. Mol Cancer, 6, 49. https://doi.org/10.1186/1476-4598-6-49
  24. Siegel RL, Miller KD, Jemal A (2015). Cancer statistics, 2015. CA Cancer J Clin, 65, 5-29. https://doi.org/10.3322/caac.21254
  25. Thaler S, Schmidt M, Schad A, et al (2012). RASSF1A inhibits estrogen receptor alpha expression and estrogen-independent signalling: implications for breast cancer development. Oncogene, 31, 4912-22. https://doi.org/10.1038/onc.2011.658
  26. Tokinaga K, Okuda H, Nomura A, et al (2004). Hypermethylation of the RASSF1A tumor suppressor gene in Japanese clear cell renal cell carcinoma. Oncol Rep, 12, 805-10.
  27. Ushijima T (2005). Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer, 5, 223-31. https://doi.org/10.1038/nrc1571
  28. Waddington CH (1939). Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci U S A, 25, 299-307. https://doi.org/10.1073/pnas.25.7.299
  29. Yamakawa K, Morita R, Takahashi E, et al (1991). A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res, 51, 4707-11.
  30. Yoon JH, Dammann R, Pfeifer GP (2001). Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int J Cancer, 94, 212-7. https://doi.org/10.1002/ijc.1466
  31. Young AN, Dale J, Yin-Goen Q, et al (2006). Current trends in molecular classification of adult renal tumors. Urol, 67, 873-80. https://doi.org/10.1016/j.urology.2005.11.042

Cited by

  1. Decreased expression of RASSF1A tumor suppressor gene is associated with worse prognosis in clear cell renal cell carcinoma vol.48, pp.1, 2016, https://doi.org/10.3892/ijo.2015.3251
  2. Cellular effects induced by 17-β-estradiol to reduce the survival of renal cell carcinoma cells vol.23, pp.1, 2016, https://doi.org/10.1186/s12929-016-0282-z
  3. STAT3 methylation in white blood cells as a novel sensitive biomarker for the toxic effect of low-dose benzene exposure vol.5, pp.3, 2016, https://doi.org/10.1039/C5TX00445D
  4. The Role of DNA Methylation in Renal Cell Carcinoma vol.22, pp.4, 2018, https://doi.org/10.1007/s40291-018-0337-9