Acknowledgement
Supported by : Ministry of Health
References
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of COPD 2011 [Internet]. [place unknown]: Global Initiative for Chronic Obstructive Lung Disease, 2013 [cited 2013 Dec 15]. Available from: http:// www.goldcopd.org/.
- Chapman KR, Mannino DM, Soriano JB, et al. Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J 2006;27:188-207. https://doi.org/10.1183/09031936.06.00024505
- Kim DS, Kim YS, Jung KS, et al. Prevalence of chronic obstructive pulmonary disease in Korea: a population- based spirometry survey. Am J Respir Crit Care Med 2005;172:842-847. https://doi.org/10.1164/rccm.200502-259OC
- Patil SP, Krishnan JA, Lechtzin N, Diette GB. In-hospital mortality following acute exacerbations of chronic obstructive pulmonary disease. Arch Intern Med 2003;163:1180-1186. https://doi.org/10.1001/archinte.163.10.1180
- Ai-Ping C, Lee KH, Lim TK. In-hospital and 5-year mortality of patients treated in the ICU for acute exacerbation of COPD: a retrospective study. Chest 2005;128:518-524. https://doi.org/10.1378/chest.128.2.518
- Berkius J, Nolin T, Mardh C, Karlstrom G, Walther SM; Swedish Intensive Care Registry. Characteristics and long-term outcome of acute exacerbations in chronic obstructive pulmonary disease: an analysis of cases in the Swedish Intensive Care Registry during 2002-2006. Acta Anaesthesiol Scand 2008;52:759-765. https://doi.org/10.1111/j.1399-6576.2008.01632.x
- Medina-Ramon M, Zanobetti A, Schwartz J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol 2006;163:579-588. https://doi.org/10.1093/aje/kwj078
- Ko FW, Tam W, Wong TW, et al. Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax 2007;62:780-785. https://doi.org/10.1136/thx.2006.076166
- Halonen JI, Lanki T, Tiittanen P, Niemi JV, Loh M, Pekkanen J. Ozone and cause-specific cardiorespiratory morbidity and mortality. J Epidemiol Community Health 2010;64:814-820. https://doi.org/10.1136/jech.2009.087106
- Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008;122:456-468. https://doi.org/10.1016/j.jaci.2008.08.004
- Barnes PJ. Alveolar macrophages as orchestrators of COPD. COPD 2004;1:59-70. https://doi.org/10.1081/COPD-120028701
- Gerritsen WB, Asin J, Zanen P, van den Bosch JM, Haas FJ. Markers of inflammation and oxidative stress in exacerbated chronic obstructive pulmonary disease patients. Respir Med 2005;99:84-90. https://doi.org/10.1016/j.rmed.2004.04.017
- Cazzola M, MacNee W, Martinez FJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008;31:416-469. https://doi.org/10.1183/09031936.00099306
- Lomas DA, Silverman EK, Edwards LD, et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur Respir J 2009;34:95-102. https://doi.org/10.1183/09031936.00156508
- Magi B, Bini L, Perari MG, et al. Bronchoalveolar lavage fluid protein composition in patients with sarcoidosis and idiopathic pulmonary fibrosis: a two-dimensional electrophoretic study. Electrophoresis 2002;23:3434-3444. https://doi.org/10.1002/1522-2683(200210)23:19<3434::AID-ELPS3434>3.0.CO;2-R
- Larsen K, Malmstrom J, Wildt M, et al. Functional and phenotypical comparison of myofibroblasts derived from biopsies and bronchoalveolar lavage in mild asthma and scleroderma. Respir Res 2006;7:11. https://doi.org/10.1186/1465-9921-7-11
- Haque R, Umstead TM, Freeman WM, Floros J, Phelps DS. The impact of surfactant protein-A on ozone-induced changes in the mouse bronchoalveolar lavage proteome. Proteome Sci 2009;7:12. https://doi.org/10.1186/1477-5956-7-12
- Luthje L, Raupach T, Michels H, et al. Exercise intolerance and systemic manifestations of pulmonary emphysema in a mouse model. Respir Res 2009;10:7. https://doi.org/10.1186/1465-9921-10-7
-
Cha MH, Rhim T, Kim KH, Jang AS, Paik YK, Park CS. Proteomic identification of macrophage migration-inhibitory factor upon exposure to
$TiO_2$ particles. Mol Cell Proteomics 2007;6:56-63. https://doi.org/10.1074/mcp.M600234-MCP200 - Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996;68:850-858. https://doi.org/10.1021/ac950914h
- Wang D, Wang Y, Liu YN. Experimental pulmonary infection and colonization of Haemophilus influenzae in emphysematous hamsters. Pulm Pharmacol Ther 2010;23:292-299. https://doi.org/10.1016/j.pupt.2010.02.006
- Triantaphyllopoulos K, Hussain F, Pinart M, et al. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol 2011;300:L691-L700. https://doi.org/10.1152/ajplung.00252.2010
- Kierstein S, Poulain FR, Cao Y, et al. Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D. Respir Res 2006;7:85. https://doi.org/10.1186/1465-9921-7-85
- Williams AS, Nath P, Leung SY, et al. Modulation of ozone-induced airway hyperresponsiveness and inflammation by interleukin-13. Eur Respir J 2008;32:571-578. https://doi.org/10.1183/09031936.00121607
- Seaman MN, Harbour ME, Tattersall D, Read E, Bright N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 2009;122(Pt 14):2371-2382. https://doi.org/10.1242/jcs.048686
- Shimi T, Pfleghaar K, Kojima S, et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 2008;22:3409-3421. https://doi.org/10.1101/gad.1735208
- Valenca SS, de Souza da Fonseca A, da Hora K, Santos R, Porto LC. Lung morphometry and MMP-12 expression in rats treated with intraperitoneal nicotine. Exp Toxicol Pathol 2004;55:393-400. https://doi.org/10.1078/0940-2993-00322
- Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008;295:L1-L15. https://doi.org/10.1152/ajplung.90200.2008
- Szabari MV, Parameswaran H, Sato S, Hantos Z, Bartolak- Suki E, Suki B. Acute mechanical forces cause deterioration in lung structure and function in elastase-induced emphysema. Am J Physiol Lung Cell Mol Physiol 2012;303:L567-L574. https://doi.org/10.1152/ajplung.00217.2012
- Liu ZB, Song NN, Geng WY, et al. Orexin-A and respiration in a rat model of smoke-induced chronic obstructive pulmonary disease. Clin Exp Pharmacol Physiol 2010;37:963-968. https://doi.org/10.1111/j.1440-1681.2010.05411.x
- Duan MC, Zhong XN, Huang Y, He ZY, Tang HJ. Mechanisms and dynamics of Th17 cells in mice with cigarette smoke-induced emphysema. Zhonghua Yi Xue Za Zhi 2011;91:1996-2000.
- Manoli SE, Smith LA, Vyhlidal CA, et al. Maternal smoking and the retinoid pathway in the developing lung. Respir Res 2012;13:42. https://doi.org/10.1186/1465-9921-13-42
- Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2004;170:492-498. https://doi.org/10.1164/rccm.200404-511OC
- Churg A, Wang RD, Xie C, Wright JL. alpha-1-Antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2003;168:199-207. https://doi.org/10.1164/rccm.200302-203OC
- Guerassimov A, Hoshino Y, Takubo Y, et al. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med 2004;170:974-980. https://doi.org/10.1164/rccm.200309-1270OC
- Cho HY, Gladwell W, Yamamoto M, Kleeberger SR. Exacerbated airway toxicity of environmental oxidant ozone in mice deficient in Nrf2. Oxid Med Cell Longev 2013;2013:254069.
- Gunay E, Sarinc Ulasli S, Akar O, et al. Neutrophil-to-lymphocyte ratio in chronic obstructive pulmonary disease: a retrospective study. Inflammation 2014;37:374-380. https://doi.org/10.1007/s10753-013-9749-1
Cited by
- Increased neutrophil gelatinase-associated lipocalin (NGAL) promotes airway remodelling in chronic obstructive pulmonary disease vol.131, pp.11, 2015, https://doi.org/10.1042/cs20170096
- Identification of differentially expressed proteins in the injured lung from zinc chloride smoke inhalation based on proteomics analysis vol.20, pp.None, 2015, https://doi.org/10.1186/s12931-019-0995-0
- Two-hybrid screening of FAM13A protein partners in lung epithelial cells vol.12, pp.None, 2015, https://doi.org/10.1186/s13104-019-4840-9
- Effects of Air Pollutants on Airway Diseases vol.18, pp.18, 2021, https://doi.org/10.3390/ijerph18189905