DOI QR코드

DOI QR Code

Image-guided radiation therapy in lymphoma management

  • Eng, Tony (Department of Radiation Oncology, University of Texas Health Science Center at San Antonio) ;
  • Ha, Chul S. (Department of Radiation Oncology, University of Texas Health Science Center at San Antonio)
  • 투고 : 2015.09.01
  • 심사 : 2015.09.16
  • 발행 : 2015.09.30

초록

Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed.

키워드

참고문헌

  1. Verellen D, De Ridder M, Storme G. A (short) history of imageguided radiotherapy. Radiother Oncol 2008;86:4-13. https://doi.org/10.1016/j.radonc.2007.11.023
  2. Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol 2007;25:938-46. https://doi.org/10.1200/JCO.2006.09.9515
  3. Michalski J, Purdy JA, Gaspar L, et al. Radiation Therapy Oncology Group. Research Plan 2002-2006. Image-Guided Radiation Therapy Committee. Int J Radiat Oncol Biol Phys 2001;51(3 Suppl 2):60-5. https://doi.org/10.1016/S0360-3016(01)01933-2
  4. Das S, Liu T, Jani AB, et al. Comparison of image-guided radiotherapy technologies for prostate cancer. Am J Clin Oncol 2014;37:616-23. https://doi.org/10.1097/COC.0b013e31827e4eb9
  5. Brock KK. Imaging and image-guided radiation therapy in liver cancer. Semin Radiat Oncol 2011;21:247-55. https://doi.org/10.1016/j.semradonc.2011.05.001
  6. Button MR, Staffurth JN. Clinical application of image-guided radiotherapy in bladder and prostate cancer. Clin Oncol (R Coll Radiol) 2010;22:698-706. https://doi.org/10.1016/j.clon.2010.06.020
  7. Russo GA, Qureshi MM, Truong MT, et al. Daily orthogonal kilovoltage imaging using a gantry-mounted on-board imaging system results in a reduction in radiation therapy delivery errors. Int J Radiat Oncol Biol Phys 2012;84:596-601. https://doi.org/10.1016/j.ijrobp.2012.01.033
  8. Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim 2006;31:30-9. https://doi.org/10.1016/j.meddos.2005.12.010
  9. Boda-Heggemann J, Lohr F, Wenz F, Flentje M, Guckenberger M. kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 2011;187:284-91. https://doi.org/10.1007/s00066-011-2236-4
  10. Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 2005;61:552-60. https://doi.org/10.1016/j.ijrobp.2004.10.011
  11. Yartsev S, Kron T, Van Dyk J. Tomotherapy as a tool in image-guided radiation therapy (IGRT): current clinical experience and outcomes. Biomed Imaging Interv J 2007;3:e17.
  12. Qiu Y, Popescu IA, Duzenli C, Moiseenko V. Mega-voltage versus kilo-voltage cone beam CT used in image guided radiation therapy: comparative study of microdosimetric properties. Radiat Prot Dosimetry 2011;143:477-80. https://doi.org/10.1093/rpd/ncq482
  13. Boda-Heggemann J, Mennemeyer P, Wertz H, et al. Accuracy of ultrasound-based image guidance for daily positioning of the upper abdomen: an online comparison with cone beam CT. Int J Radiat Oncol Biol Phys 2009;74:892-7. https://doi.org/10.1016/j.ijrobp.2009.01.061
  14. Baroni G, Riboldi M, Spadea MF, et al. Integration of Enhanced Optical Tracking Techniques and Imaging in IGRT. J Radiat Res 2007;48 Suppl A:A61-74. https://doi.org/10.1269/jrr.48.A61
  15. Jiang SB. Technical aspects of image-guided respiration-gated radiation therapy. Med Dosim 2006;31:141-51. https://doi.org/10.1016/j.meddos.2005.12.005
  16. Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 2006;7:848-58. https://doi.org/10.1016/S1470-2045(06)70904-4
  17. Brennan DD, Gleeson T, Coate LE, Cronin C, Carney D, Eustace SJ. A comparison of whole-body MRI and CT for the staging of lymphoma. AJR Am J Roentgenol 2005;185:711-6. https://doi.org/10.2214/ajr.185.3.01850711
  18. Hagtvedt T, Seierstad T, Lund KV, et al. Diffusion-weighted MRI compared to FDG PET/CT for assessment of early treatment response in lymphoma. Acta Radiol 2015;56:152-8. https://doi.org/10.1177/0284185114526087
  19. Mosavi F, Wassberg C, Selling J, Molin D, Ahlstrom H. Whole-body diffusion-weighted MRI and 18F-FDG PET/CT can discriminate between different lymphoma subtypes. Clin Radiol 2015 Jul 21 [Epub]. http://dx.doi.org/10.1016/j.crad.2015.06.087.
  20. Xu H, Xu K, Wang R, Liu X. Primary pulmonary diffuse large B-cell lymphoma on FDG PET/CT-MRI and DWI. Medicine (Baltimore) 2015;94:e1210. https://doi.org/10.1097/MD.0000000000001210
  21. Punwani S, Taylor SA, Saad ZZ, et al. Diffusion-weighted MRI of lymphoma: prognostic utility and implications for PET/MRI? Eur J Nucl Med Mol Imaging 2013;40:373-85. https://doi.org/10.1007/s00259-012-2293-7
  22. Rosenberg SA. Lymphography: a great advance, abandoned. J Clin Oncol 2008;26:5662-3. https://doi.org/10.1200/JCO.2008.20.6946
  23. Wahl RL, Herman JM, Ford E. The promise and pitfalls of positron emission tomography and single-photon emission computed tomography molecular imaging-guided radiation therapy. Semin Radiat Oncol 2011;21:88-100. https://doi.org/10.1016/j.semradonc.2010.11.004
  24. Even-Sapir E, Israel O. Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S65-81. https://doi.org/10.1007/s00259-003-1164-7
  25. Heron DE, Smith RP, Andrade RS. Advances in image-guided radiation therapy: the role of PET-CT. Med Dosim 2006;31:3-11. https://doi.org/10.1016/j.meddos.2005.12.006
  26. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol 2011;29:1844-54. https://doi.org/10.1200/JCO.2010.32.5225
  27. Barber NA, Loberiza FR Jr, Perry AM, et al. Does functional imaging distinguish nodular lymphocyte-predominant hodgkin lymphoma from T-cell/histiocyte-rich large B-cell lymphoma? Clin Lymphoma Myeloma Leuk 2013;13:392-7. https://doi.org/10.1016/j.clml.2013.03.004
  28. Schoder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin's lymphoma. J Clin Oncol 2005;23:4643-51. https://doi.org/10.1200/JCO.2005.12.072
  29. Hutchings M, Loft A, Hansen M, Ralfkiaer E, Specht L. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake. Hematol Oncol 2006;24:146-50. https://doi.org/10.1002/hon.782
  30. Moskowitz CH, Zelenetz A, Schoder H. An update on the role of interim restaging FDG-PET in patients with diffuse large B-cell lymphoma and Hodgkin lymphoma. J Natl Compr Canc Netw 2010;8:347-52. https://doi.org/10.6004/jnccn.2010.0023
  31. Mikhaeel NG, Hutchings M, Fields PA, O'Doherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol 2005;16:1514-23. https://doi.org/10.1093/annonc/mdi272
  32. Isasi CR, Moadel RM, Blaufox MD. A meta-analysis of FDG-PET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 2005;90:105-12. https://doi.org/10.1007/s10549-004-3291-7
  33. Al-Nahhas A, Win Z, Al-Sayed Y, et al. Anatomic and functional imaging in the management of lymphoma. Q J Nucl Med Mol Imaging 2007;51:251-9.
  34. Ciernik IF, Dizendorf E, Baumert BG, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853-63. https://doi.org/10.1016/S0360-3016(03)00346-8
  35. Girinsky T, Auperin A, Ribrag V, et al. Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin lymphoma patients. Int J Radiat Oncol Biol Phys 2014;89:1047-52. https://doi.org/10.1016/j.ijrobp.2014.04.026
  36. Wu X, Pertovaara H, Korkola P, et al. Early interim PET/CT predicts post-treatment response in diffuse large B-cell lymphoma. Acta Oncol 2014;53:1093-9. https://doi.org/10.3109/0284186X.2014.927074
  37. Erturk SM, Van den Abbeele AD. Role of PET/CT scanning in initial and post-treatment assessment of Hodgkin disease. J Natl Compr Canc Netw 2008;6:623-32. https://doi.org/10.6004/jnccn.2008.0047
  38. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: non-Hodgkin lymphomas and Hodgkin lymphoma [Internet]. Fort Washington, PA: National Comprehensive Cancer Network; c2015 [cited 2015 Sep 17]. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp.
  39. Querellou S, Valette F, Bodet-Milin C, et al. FDG-PET/CT predicts outcome in patients with aggressive non-Hodgkin's lymphoma and Hodgkin's disease. Ann Hematol 2006;85:759-67. https://doi.org/10.1007/s00277-006-0151-z
  40. Al Shemmari S, Sankaranarayanan SP, Krishnan Y. Primary mediastinal large B-cell lymphoma: clinical features, prognostic factors and survival with RCHOP in Arab patients in the PET scan era. Lung India 2014;31:228-31. https://doi.org/10.4103/0970-2113.135760
  41. Cuccaro A, Bartolomei F, Cupelli E, Galli E, Giachelia M, Hohaus S. Prognostic factors in hodgkin lymphoma. Mediterr J Hematol Infect Dis 2014;6:e2014053. https://doi.org/10.4084/mjhid.2014.053
  42. Vaidya R, Witzig TE. Prognostic factors for diffuse large B-cell lymphoma in the R(X)CHOP era. Ann Oncol 2014;25:2124-33. https://doi.org/10.1093/annonc/mdu109
  43. Liu YC, Gau JP, Yu YB, et al. Prognostic factors and treatment efficacy in patients with primary diffuse large B-cell lymphoma of the bone: single institute experience over 11 years. Intern Med 2014;53:95-101. https://doi.org/10.2169/internalmedicine.53.0967
  44. Ng AK, Hodgson DC. Is there a role for consolidative radiation therapy for aggressive B-cell lymphoma in the rituximab era? Leuk Lymphoma 2011;52:1821-2. https://doi.org/10.3109/10428194.2011.594193
  45. Ng AK, Mauch PM. Role of radiation therapy in localized aggressive lymphoma. J Clin Oncol 2007;25:757-9. https://doi.org/10.1200/JCO.2006.09.5562
  46. Laskar S, Kumar DP, Khanna N, et al. Radiation therapy for early stage unfavorable Hodgkin lymphoma: is dose reduction feasible? Leuk Lymphoma 2014;55:2356-61. https://doi.org/10.3109/10428194.2013.871631
  47. Torok JA, Wu Y, Prosnitz LR, et al. Low-dose consolidation radiation therapy for early stage unfavorable Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 2015;92:54-9. https://doi.org/10.1016/j.ijrobp.2015.02.003
  48. Specht L, Yahalom J, Illidge T, et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys 2014;89:854-62. https://doi.org/10.1016/j.ijrobp.2013.05.005
  49. Hoskin PJ, Diez P, Williams M, Lucraft H, Bayne M; Participants of the Lymphoma Radiotherapy G. Recommendations for the use of radiotherapy in nodal lymphoma. Clin Oncol (R Coll Radiol) 2013;25:49-58. https://doi.org/10.1016/j.clon.2012.07.011
  50. Yahalom J, Illidge T, Specht L, et al. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys 2015;92:11-31. https://doi.org/10.1016/j.ijrobp.2015.01.009
  51. Specht L, Dabaja B, Illidge T, Wilson LD, Hoppe RT; International Lymphoma Radiation Oncology Group. Modern radiation therapy for primary cutaneous lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys 2015;92:32-9. https://doi.org/10.1016/j.ijrobp.2015.01.008
  52. Bindra RS, Yahalom J. The important role of radiation therapy in early-stage diffuse large B-cell lymphoma: time to review the evidence once again. Expert Rev Anticancer Ther 2011;11:1367-78. https://doi.org/10.1586/era.11.88
  53. Marcheselli L, Marcheselli R, Bari A, et al. Radiation therapy improves treatment outcome in patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2011;52:1867-72. https://doi.org/10.3109/10428194.2011.585526
  54. Hu C, Deng C, Zou W, Zhang G, Wang J. The role of consolidative radiotherapy after a complete response to chemotherapy in the treatment of diffuse large B-cell lymphoma in the rituximab era: results from a systematic review with a meta-analysis. Acta Haematol 2015;134:111-8. https://doi.org/10.1159/000370096
  55. Phan J, Mazloom A, Abboud M, et al. Consolidative radiation therapy for stage III Hodgkin lymphoma in patients who achieve complete response after ABVD chemotherapy. Am J Clin Oncol 2011;34:499-505.
  56. Deluca PM Jr. The international commission on radiation units and measurements. J ICRU 2009;9:NP.
  57. Rusten E, Rodal J, Bruland O, Malinen E. Biologic targets identified from dynamic 18FDG-PET and implications for image-guided therapy. Acta Oncol 2013;52:1378-83. https://doi.org/10.3109/0284186X.2013.813071
  58. Illidge T, Specht L, Yahalom J, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys 2014;89:49-58. https://doi.org/10.1016/j.ijrobp.2014.01.006
  59. Samant RS, Fox GW, Gerig LH, Montgomery LA, Allan DS. Total scalp radiation using image-guided IMRT for progressive cutaneous T cell lymphoma. Br J Radiol 2009;82:e122-5. https://doi.org/10.1259/bjr/61338036
  60. Renaud J, Yartsev S, Dar AR, Van Dyk J. Successful treatment of primary renal lymphoma using image guided helical tomotherapy. Can J Urol 2009;16:4639-47.
  61. Chargari C, Zefkili S, Kirova YM. Potential of helical tomotherapy for sparing critical organs in a patient with AIDS who was treated for Hodgkin lymphoma. Clin Infect Dis 2009;48:687-9.
  62. Tomita N, Kodaira T, Tachibana H, et al. A comparison of radiation treatment plans using IMRT with helical tomotherapy and 3D conformal radiotherapy for nasal natural killer/T-cell lymphoma. Br J Radiol 2009;82:756-63. https://doi.org/10.1259/bjr/83758373
  63. Chargari C, Vernant JP, Tamburini J, et al. Feasibility of helical tomotherapy for debulking irradiation before stem cell transplantation in malignant lymphoma. Int J Radiat Oncol Biol Phys 2011;81:1184-9. https://doi.org/10.1016/j.ijrobp.2010.01.051
  64. Filippi AR, Ciammella P, Piva C, et al. Involved-site image-guided intensity modulated versus 3D conformal radiation therapy in early stage supradiaphragmatic Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 2014;89:370-5. https://doi.org/10.1016/j.ijrobp.2014.01.041
  65. Macklis RM, Conti PS. Image-guided radiotherapy in lymphoma management: the increasing role of functional imaging. London, UK: CRC Press; 2010.
  66. Blair H, Sharma N. Aggressive B-cell non-Hodgkin's lymphoma. In: Macklis RM, Conti PS, editors. Image-guided radiotherapy in lymphoma management: the increasing role of functional imaging. London, UK: CRC Press; 2010. p. 43-50.
  67. Niyazi M, Landrock S, Elsner A, et al. Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat Oncol 2013;8:180. https://doi.org/10.1186/1748-717X-8-180
  68. Ng A, Nguyen TN, Moseley JL, Hodgson DC, Sharpe MB, Brock KK. Reconstruction of 3D lung models from 2D planning data sets for Hodgkin's lymphoma patients using combined deformable image registration and navigator channels. Med Phys 2010;37:1017-28. https://doi.org/10.1118/1.3284368
  69. Brock KK, Hawkins M, Eccles C, et al. Improving image-guided target localization through deformable registration. Acta Oncol 2008;47:1279-85. https://doi.org/10.1080/02841860802256491

피인용 문헌

  1. Radiation therapy for gastric mucosa-associated lymphoid tissue lymphoma: dose-volumetric analysis and its clinical implications vol.34, pp.3, 2016, https://doi.org/10.3857/roj.2016.01865
  2. Treatment outcome and risk analysis for cataract after radiotherapy of localized ocular adnexal mucosa-associated lymphoid tissue (MALT) lymphoma vol.35, pp.3, 2015, https://doi.org/10.3857/roj.2017.00374