DOI QR코드

DOI QR Code

만성 알코올과 철분의 과잉 섭취가 흰쥐의 간 세포 미토콘드리아 DNA 손상에 미치는 영향

Effects of chronic alcohol and excessive iron intake on mitochondrial DNA damage in the rat liver

  • 박정은 (경희대학교 생활과학대학 식품영양학과) ;
  • 이정란 (경희대학교 생활과학대학 식품영양학과) ;
  • 정자용 (경희대학교 생활과학대학 식품영양학과)
  • Park, Jung-Eun (Department of Food and Nutrition, Kyung Hee University) ;
  • Lee, Jeong-Ran (Department of Food and Nutrition, Kyung Hee University) ;
  • Chung, Jayong (Department of Food and Nutrition, Kyung Hee University)
  • 투고 : 2015.08.18
  • 심사 : 2015.10.08
  • 발행 : 2015.10.31

초록

본 연구에서는 Sprague-Dawley 종 랫트 수컷을 대조군, EtOH군, Fe군, EtOH + Fe군으로 나누어, 알코올과 철분을 액상 사료로 8주간 공급한 후, 간 조직과 간 세포 mtDNA의 손상 정도를 알아보았다. EtOH + Fe군은 대조군, EtOH군, Fe군의 다른 세 군에 비해 혈청 ALT와 혈청 AST 수치가 가장 유의적으로 높았으며, 간 조직 검사의 결과에서도 다수의 지방구, 염증성 세포 침입 및 조직의 괴사가 관찰되는 등 가장 심한 간 손상이 확인되었다. DNA 손상 여부를 긴 영역 PCR을 사용하여 분석한 결과, 만성적인 알코올과 철분에 의한 노출은 간 세포의 mtDNA 손상을 유발하는 것으로 나타났으며, 핵 DNA에는 영향을 미치지 않았다. 또한 미토콘드리아의 호흡에 관여하는 Cox1과 Nd4 유전자 발현 정도를 real-time PCR으로 분석한 결과, 알코올 또는 철분은 간 세포의 Cox1 mRNA와 Nd4 mRNA 수준을 유의적으로 낮추는 것으로 나타났다. 이상의 결과는 만성 알코올 또는 과잉의 철분에 의한 간 손상에 mtDNA 손상 및 미토콘드리아 기능 저하가 관여함을 제시한다.

Purpose: In this study, we investigated the effects of chronic alcohol and excessive iron intake on mitochondrial DNA (mtDNA) damage and the progression of alcoholic liver injury in rats. Methods: Twenty-four Sprague-Dawley male rats were divided into four groups (Control, EtOH, Fe, and EtOH + Fe), and fed either control or ethanol (36% of total calories) liquid diet with or without 0.6% carbonyl iron for eight weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, liver malondialdehyde concentrations were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. The integrity of the hepatic mtDNA and nuclear DNA was measured by long-range PCR. The gene expression levels of cytochrome c oxidase subunit 1 (Cox1) and NADH dehydrogenase subunit 4 (Nd4) were examined by real-time PCR. Results: Serum ALT and AST activities were significantly higher in the EtOH+Fe group, as compared to the Control group. Similarly, among four groups, liver histology showed the most severe lipid accumulation, inflammation, and necrosis in the EtOH + Fe group. PCR amplification of near-full-length (15.9 kb) mtDNA showed more than 50% loss of full-length product in the liver of the EtOH + Fe group, whereas amounts of PCR products of a nuclear DNA were unaffected. In addition, the changes in the mtDNA integrity showed correlation with reductions in the mRNA levels of mitochondrial gene Cox1 and Nd4. Conclusion: Our data suggested that the liver injury associated with excessive iron and alcohol intake involved mtDNA damage and corresponding mitochondrial dysfunction.

키워드

참고문헌

  1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2013: Korea National Health and Nutrition Examination Survey (KNHANES VI-1). Cheongju: Korea Centers for Disease Control and Prevention; 2014.
  2. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Community health survey 2014. Cheongju; Korea Centers for Disease Control and Prevention: 2015.
  3. Statistice Korea. Cause of death statistics 2013 [Internet]. Daejeon: Statistice Korea; 2014 [cited 2015 Aug 1]. Available form: http://kostat.go.kr.
  4. Stewart S, Jones D, Day CP. Alcoholic liver disease: new insights into mechanisms and preventative strategies. Trends Mol Med 2001; 7(9): 408-413. https://doi.org/10.1016/S1471-4914(01)02096-2
  5. Becker U, Deis A, Sorensen TI, Gronbaek M, Borch-Johnsen K, Muller CF, Schnohr P, Jensen G. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 1996; 23(5): 1025-1029. https://doi.org/10.1002/hep.510230513
  6. Valerio LG Jr, Parks T, Petersen DR. Alcohol mediates increases in hepatic and serum nonheme iron stores in a rat model for alcoholinduced liver injury. Alcohol Clin Exp Res 1996; 20(8): 1352-1361. https://doi.org/10.1111/j.1530-0277.1996.tb01134.x
  7. Tsukamoto H, Horne W, Kamimura S, Niemela O, Parkkila S, Yla-Herttuala S, Brittenham GM. Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 1995; 96(1): 620-630. https://doi.org/10.1172/JCI118077
  8. Ganne-Carrie N, Christidis C, Chastang C, Ziol M, Chapel F, Imbert-Bismut F, Trinchet JC, Guettier C, Beaugrand M. Liver iron is predictive of death in alcoholic cirrhosis: a multivariate study of 229 consecutive patients with alcoholic and/or hepatitis C virus cirrhosis: a prospective follow up study. Gut 2000; 46(2): 277-282. https://doi.org/10.1136/gut.46.2.277
  9. Kim HT, Chun SS, Joung SH, Yun ME. Nutrient intake status of Korean drinkers: analysis of data from Korea National Health and Nutrition Examination Survey (KNHANES), 2011. J Korean Diet Assoc 2013; 19(4): 343-355. https://doi.org/10.14373/JKDA.2013.19.4.343
  10. Kwak CS, Lee JW, Hyun WJ. The effects of smoking and alcohol drinking on nutritional status and eating habits in adult males. Korean J Community Nutr 2000; 5(2): 161-171.
  11. Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin Exp Res 2001; 25(7): 1037-1045. https://doi.org/10.1111/j.1530-0277.2001.tb02314.x
  12. Blake R, Trounce IA. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta 2014; 1840(4): 1404-1412. https://doi.org/10.1016/j.bbagen.2013.11.007
  13. Aliev G, Priyadarshini M, Reddy VP, Grieg NH, Kaminsky Y, Cacabelos R, Ashraf GM, Jabir NR, Kamal MA, Nikolenko VN, Zamyatnin AA Jr, Benberin VV, Bachurin SO. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 2014; 21(19): 2208-2217. https://doi.org/10.2174/0929867321666131227161303
  14. Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012; 12(10): 685-698. https://doi.org/10.1038/nrc3365
  15. Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol 2013; 3: 292.
  16. Olynyk J, Hall P, Reed W, Williams P, Kerr R, Mackinnon M. A long-term study of the interaction between iron and alcohol in an animal model of iron overload. J Hepatol 1995; 22(6): 671-676. https://doi.org/10.1016/0168-8278(95)80222-3
  17. Takeyama Y, Kamimura S, Kuroiwa A, Sohda T, Irie M, Shijo H, Okumura M. Role of Kupffer cell-derived reactive oxygen intermediates in alcoholic liver disease in rats in vivo. Alcohol Clin Exp Res 1996; 20(9 Suppl): 335A-339A. https://doi.org/10.1111/j.1530-0277.1996.tb01803.x
  18. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  19. Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B. Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 2000; 22(2): 135-147. https://doi.org/10.1006/meth.2000.1054
  20. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 1997; 94(2): 514-519. https://doi.org/10.1073/pnas.94.2.514
  21. Masola B, Devlin TM. Intramitochondrial localization of alanine aminotransferase in rat-liver mitochondria: comparison with glutaminase and aspartate aminotransferase. Amino Acids 1995; 9(4): 363-374. https://doi.org/10.1007/BF00807273
  22. Demori I, Voci A, Fugassa E, Burlando B. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol 2006; 40(3): 185-191. https://doi.org/10.1016/j.alcohol.2006.12.006
  23. Brandon-Warner E, Schrum LW, Schmidt CM, McKillop IH. Rodent models of alcoholic liver disease: of mice and men. Alcohol 2012; 46(8): 715-725. https://doi.org/10.1016/j.alcohol.2012.08.004
  24. Mathews S, Xu M, Wang H, Bertola A, Gao B. Animals models of gastrointestinal and liver diseases. Animal models of alcoholinduced liver disease: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2014; 306(10): G819-G823. https://doi.org/10.1152/ajpgi.00041.2014
  25. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology 1998; 114(4): 842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
  26. Wu D, Cederbaum AI. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. Toxicol Appl Pharmacol 2005; 207(2 Suppl): 70-76. https://doi.org/10.1016/j.taap.2005.01.057
  27. Xiong S, She H, Sung CK, Tsukamoto H. Iron-dependent activation of NF-${\kappa}B$ in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol 2003; 30(2): 107-113. https://doi.org/10.1016/S0741-8329(03)00100-9
  28. Choi JS, Koh IU, Lee HJ, Kim WH, Song J. Effects of excess dietary iron and fat on glucose and lipid metabolism. J Nutr Biochem 2013; 24(9): 1634-1644. https://doi.org/10.1016/j.jnutbio.2013.02.004
  29. Silva M, da Costa Guerra JF, Sampaio AF, de Lima WG, Silva ME, Pedrosa ML. Iron dextran increases hepatic oxidative stress and alters expression of genes related to lipid metabolism contributing to hyperlipidaemia in murine model. Biomed Res Int 2015; 2015:272617.
  30. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 1988; 85(17): 6465-6467. https://doi.org/10.1073/pnas.85.17.6465
  31. Cederbaum A. Nrf2 and antioxidant defense against CYP2E1 toxicity. Expert Opin Drug Metab Toxicol 2009; 5(10): 1223-1244. https://doi.org/10.1517/17425250903143769
  32. Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med 2003; 34(1): 1-10. https://doi.org/10.1016/S0891-5849(02)01167-X
  33. Lu Y, Cederbaum AI. CYP2E1 potentiation of LPS and $TNF{\alpha}$- induced hepatotoxicity by mechanisms involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and mitochondrial dysfunction. Genes Nutr 2010; 5(2): 149-167. https://doi.org/10.1007/s12263-009-0150-5
  34. Larosche I, Choumar A, Fromenty B, Letteron P, Abbey-Toby A, Van Remmen H, Epstein CJ, Richardson A, Feldmann G, Pessayre D, Mansouri A. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates. Toxicol Appl Pharmacol 2009; 234(3): 326-338. https://doi.org/10.1016/j.taap.2008.11.004
  35. Tang Y, Gao C, Xing M, Li Y, Zhu L, Wang D, Yang X, Liu L, Yao P. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 2012; 50(5): 1194- 1200. https://doi.org/10.1016/j.fct.2012.02.008
  36. Lakshmi Devi S, Anuradha CV. Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids 2010; 38(3): 869-879. https://doi.org/10.1007/s00726-009-0293-0
  37. Gao X, Campian JL, Qian M, Sun XF, Eaton JW. Mitochondrial DNA damage in iron overload. J Biol Chem 2009; 284(8): 4767-4775. https://doi.org/10.1074/jbc.M806235200

피인용 문헌

  1. 방사선에 의한 미토콘드리아 손상의 형태학적 고찰 vol.43, pp.1, 2020, https://doi.org/10.17946/jrst.2020.43.1.29