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요 약

MFCC는 음성 신호 처리에서 귀중한 특징 벡터들 중 하나이다. MFCC에서 명백한 결점은 푸리에 변환의 크기

를 취함에 의해 위상 정보가 손실된다는 것이다. 이 논문에서 우리는 푸리에 변환의 실수부와 허수부 크기를 따

로 취급함으로써 위상 정보를 활용하는 방법을 생각한다. 퍼지 벡터 양자화와 은닉 마코브 모델을 이용한 음성 

인식에 이 방법을 적용함으로써, 종전 방법에 비해 음성 인식 오류율을 줄일 수 있음을 보인다. 우리는 또한 수치

해석을 통하여, FFT의 실수부와 허수부 각각에서 6개의 성분을 취하여 모두 12개의 MFCC 성분을 사용하는 것

이 음성인식에 최적임을 보인다.

ABSTRACT

Mel-Frequency Cepstral Coefficients(: MFCC) is one of the noble feature vectors for speech signal processing. An evident 

drawback in MFCC is that the phase information is lost by taking the magnitude of the Fourier transform. In this paper, we 

consider a method of utilizing the phase information by treating the magnitudes of real and imaginary components of FFT 

separately. By applying this method to speech recognition with FVQ/HMM, the speech recognition error rate is found to decrease 

compared to the conventional MFCC. By numerical analysis, we show also that the optimal value of MFCC components is 12 

which come from 6 real and imaginary components of FFT each.
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I. Introduction

As a method of communication between man and 

machine, speech recognition provides a very 

effective interface. Speech input to a machine is 

about twice as fast as information entry by a 

skilled typist[1].

The state of the art in the field of speech 

recognition has now reached such a level of 

performance and robustness, even in noisy 

environments, that permits lots of daily applications. 

As a result, we are now living in a world of 

various devices which deploy the relevant 

technology[2-5].

However, in practical applications currently, the 

machine provides several candidates for the  

recognized word(or phrase or sentence) and the 

user(human being) selects one of them. In other 
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words, the man-machine communication proceeds 

with confirmation for each response. This might be 

one of the reasons that hinder the wide spread of 

the speech recognition technology in our daily life. 

For example, there are seldom found in Internet 

banking who send money by invoking the speech 

recognition method. In this sense, the speech 

recognition technology needs to be much more 

refined to reach the level of human-human 

conversation with little confirmation.

In speech processing, the importance of the 

feature extraction cannot be overemphasized. There 

are several kinds of parametric representations for 

acoustic speech signals[6]. Among them, MFCC is 

currently one of the most popular methods of 

front-end processing for subsequent speech works 

such as vocoding, speaker identification, and speech 

recognition.

In obtaining MFCC, we take the Fourier 

transform of the speech signal, its magnitude, and 

cosine transform successively. An apparent 

drawback of this approach is that the phase 

information, i.e. the relative nature(including 

polarity) of the real and imaginary components of 

the Fourier transform is lost. Phase information 

plays great roles in many applications[7-8]. In this 

paper, we study on the method of enhancing the 

speech recognition performance by utilizing the 

phase information of the speech signal.

The organization of this paper is as follows. 

Section II reviews the conventional procedure of 

MFCC feature extraction. Section III provides 

several methods of remedying the drawback of this 

method. Experimental details on the application of 

the proposed method to speech recognition is given 

in Section IV. After providing the results and 

discussion in section V, concluding remarks will be 

given in section VI.

II. Review of the MFCC Extraction

Speech signal is first pre-emphasized with FIR 

filter for spectral flattening. This is usually 

intended to boost the signal spectrum approximately 

20 dB per decade. For short-term analysis, the 

signal is blocked into frames of duration ∼10 ms. 

To reduce edge effects incurred by abrupt frame 

blocking, Hamming or Hanning window is applied 

to each frame. After performing FFT on this 

signal, log-energies in the filter banks are 

estimated and fed through discrete cosine transform 

to obtain MFCC. The concrete implementation 

procedures are as follows.

Step 1: Preprocessing of the speech signal such 

as Hamming windowing and spectral flattening are 

performed on the input speech signal. The resultant 

signal is given by       ⋯ 

  is the frame size which is usually of ∼

10 ms time duration and chosen as a power of 

two.

Step 2: Spectrum in the frequency domain is 

obtained by FFT on  , the result being

 




exp 



     ⋯  

(1)

It should be noted that, only the components of 

 ∼  are meaningful among the array 

  returned by FFT.

Step 3: The energy content in each Mel window 

is evaluated:

  




 


    ⋯ 

(2)

  is the number of windows ranging usually from 

20 to 24. The windows are arranged according to 

the Mel-scale[9].

Step 4: MFCC is obtained by cosine transform 

on the log of the Mel-window energies:
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 


 


log cos

 
    ⋯

(3)

  is the order of MFCC, which is usually taken to 

be 13 on empirical grounds.

III. Utilization of the Phase Information

Fig. 1 is a portion of a speech phoneme /ah/ 

pronounced by a young female speaker and Fig. 2 

is its FFT.

Fig. 1 A portion of a speech phoneme /ah/ 
pronounced by a young female speaker

Fig. 2 FFT of Fig. 1

We note that the phase information of FFT is 

lost by taking the absolute square, in Eq. (2), of 

the real and imaginary components. This is an 

evident drawback of FFT. It is worthy of utilizing 

the phase information embodied in Eq. (1).

An approach for this purpose is to include the 

phase angle

log  log  ∠
∠  arctan

 
in between the steps 2 and 3 of section II. 

However, this method causes problems associated 

with wrapping and aliasing[10]. Another trouble is 

that it is not easy to devise a method of treating 

the phase angle and other parameters on equal 

footing.

Another method is to use complex MFCC[11]. 

Fig. 3 shows separately the real and imaginary 

components of FFT given in Fig. 2. The vertical 

bars within the graph denote not the graph grids 

but the frequency positions of the six peaks in 

Fig. 2.

Fig. 3 The real and imaginary components of FFT 
for Fig. 1

Since we need log energy content in each 

window in estimation of MFCC, what matters is 

the absolute value of FFT. If we treat the real and 

imaginary components separately, we could acquire 

two kinds of advantages. Firstly, a single peak in 

magnitude spectrum(as shown in Fig. 2) is 

generally resolved into double peaks. The left three 

peaks of Fig. 3 correspond to this case. Secondly, 

even if the peak positions of real and imaginary 
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components coincide(at the same frequency), the 

relative magnitudes of them are different in general. 

This is another sort of information. The 4th and 

6th peaks of Fig. 3 correspond to this case.

In order to utilize the phase information based 

on the idea mentioned above, we modify the 

procedures of MFCC extraction as follows.

Step 1 and Step 2 are the same as the 

conventional ones described above. By these 

procedures,   is obtained. Complex MFCC 

goes another way from Step 3 in order not to 

discard phase information contents. The procedures 

are as follows.

Step 3: Instead of adding the real and imaginary 

components, we estimate the energy contents 

separately as follows.

 
  

 (4)

Step 4: The energy contents in each Mel 

window for real and imaginary components are 

evaluated separately:

 






 






   ∼ (5)

where   is 20∼24.

The final procedure for new MFCC extraction is, 

as usual, to perform the cosine transform of the 

log energies:

 


 


log cos

 

  


 


log cos

 
   ⋯ 

(6)

Another motivation for our approach might be 

inferred from Fig. 4. The abscissa and ordinate 

represent the order and variance of MFCC 

respectively. We see that the variance decreases as 

the MFCC order increases. We might conjecture 

that it is desirable to get more information from 

the lower portion of the MFCC order.

In conventional method, the MFCC order   is 

usually 13. However, in our new method, a search 

for the optimal value for it will be performed. 

Otherwise, doubling of   due to inclusion of real 

and imaginary components might incur somewhat 

heavy computational load. In this paper, therefore,  

we vary the value of   and investigate its effect 

on the performance of speech recognition.

Fig. 4 Relative variances of the MFCC values

IV. Experiment

Our experiments were performed on a set of 

phone-balanced 300 Korean words. Forty people of 

20 male and female speakers each produced speech 

utterances, which were divided into three disjoint 

groups as in Table 1.

Table 1 Division of the 40 people's speech

Speaker Group Number of People

I 28

II 6

III 6

Speech tokens of the group I were used in 

generating codebook of size 512, whose centroids 

serve for Fuzzy Vector Quantization(FVQ) of all 
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the speeches of 40 people.

HMM parameters were updated on each iteration 

of training. In order to choose which values of 

parameters to use in the final test of speech 

recognition, some test speeches are necessary. The 

parameters that yield the best performance on the 

group II were stored and used for the test on the 

group III to obtain the final result of the system. 

This prescription prevents the system from falling 

into the local minimum driven by the training 

samples of the group I. Otherwise, the system 

becomes less robust against the speaker-independence 

when applied to the group III. It is a good strategy 

for balance between memorization and 

generalization[12].

The speech utterances were sampled at 16 kHz 

and quantized by 16 bits. 512 data points 

corresponding to 32 ms of time duration were 

taken to be a speech frame for short-term 

analysis. The next frame was obtained by 

shifting 256 data points, thereby overlapping the 

adjacent frames by 50% in order not to lose any 

information contents of coarticulation[13].

To each frame, Hanning window was applied 

after pre-emphasis for spectral flattening. MFCC 

feature vectors of order 13 were obtained and then 

Cepstral Mean Subtraction(CMS)[14] were applied 

on utterance basis to endow robustness against 

various adverse effects such as system dependence 

and noisy environment. CMS was performed on the 

real and imaginary components independently.

Codebooks of 512 clusters were generated by the 

k-means clustering algorithm on the MFCC feature 

vectors obtained from the speeches of the group I 

of Table 2. The distances between the vectors and 

the codebook centroids were calculated and sorted. 

Appropriately normalized fuzzy membership values 

were assigned to the nearest two clusters and a 

train of doublets(cluster index / fuzzy membership) 

fed into the machine of Hidden Markov Model 

(HMM) for speech recognition processing.

As for the HMM, a non-ergodic left-right (or 

Bakis) model was adopted. The number of states 

that is set separately for each class(word) was 

made proportional to the average number of frames 

of the training samples in that class[15]. Initial 

estimation of HMM parameters      was 

obtained by K-means segmental clustering after the 

first training. By this procedure, convergence of the 

parameters became so fast that enough convergence 

was reached mostly in several epochs of training 

iterations.

Backward state transitions were prohibited by 

suppressing the state transition probabilities   

with    to a very small value, but skipping of 

states was allowed. The last frame was restricted 

to end up with the final state associated with the 

word being scored within a tolerance of 3. 

Parameter reestimation was performed by 

Baum-Welch reestimation formula with scaled 

multiple observation sequences to avoid 

machine-errors caused by repetitive multiplication 

of small numbers. After each iteration, the event 

observation probabilities     were boosted above 

a small value.

Three features were monitored while training the 

HMM parameters: (1) the recognition error rate for 

the group II of Table 1, (2) the total probability 

likelihood of events summed over all the words of 

the training set according to the trained model, and 

(3) the event observation probabilities for the first 

state of the first word in the vocabulary list. 

Training was terminated manually when the 

convergences for these three features were thought 

to be enough. The parameter values of 

     that give the best result for the 

group II were stored and used in speech 

recognition test on the group III of Table 2.

V. Results and Discussion
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Fig. 5 shows the speech recognition error rate   

vs. the number   of total MFCC components(for 

separate real and imaginary FFT components).

The experimental values are shown by diamond 

symbols. The horizontal solid line denotes the 

average value(2.13%) of   for the seven data of 

the right side. The horizontal dotted line denotes 

the value(3.50%) of   for the conventional MFCC 

with 13 components.

Fig. 5 Recognition error rate   vs. the number   
of total FFT components

The data in Fig. 5 might be phrased in terms of 

two regimes. As the number   of total 

components is decreased from large to small values, 

the recognition error rate   does not show 

significant changes(regime I). However, below a 

certain threshold around  , it begins to 

increase rapidly(regime II).

To examine the behavior in regime II and 

thereby determine the optimal value for  , we 

need numerical analysis. We might try employing 

the exponential model

   exp
with adjustable parameters   and  , which is to 

be determined from curve-fitting. However, this 

does not seem to be a good choice, since it implies

 →    as  → 

which should not be the case.

For this reason, we employ a power law model

  

with adjustable parameters   and  . By taking the 

logarithm of both sides and applying the routine of 

the least square method,   and   can be calculated. 

The best fit for the left four data of Fig. 5 was 

found to be

    (7)

and is shown in Fig. 6 by the solid curve.

Fig. 6 Recognition error rate vs. the number of total 
FFT components

The vertical line within the graph denotes 

intersection of Eq. (7) and the horizontal solid line. 

Its value of   represents the optimal one in that it 

affords the minimum number of total components 

with no significant degradation of the recognition 

error rate. The value is around 12, which means 

that six components of real and imaginary 

components each are the best choice for the 

recognition task of our experiments.
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VI. Conclusion

In an effort to improve speech recognition 

performance, we considered a method of utilizing 

the phase information in the Fourier transform of 

the speech signal, which is discarded in 

conventional MFCC. Among several approaches for 

that purpose, we studied of treating the real and 

imaginary FFT components separately for MFCC 

extraction.

This idea was tested by speaker-independent 

speech recognition of 300 Korean isolated words by 

FVQ and HMM. The number of total(real and 

imaginary) components was varied from 4 to 26.

The experimental result showed largely two 

stages of changes as the value of the total 

components is decreased from large values. For 

relatively large values, the recognition error rate 

does not show significant change. Below a certain 

threshold value, however, it increases nonlinearly.

From numerical analysis, it was shown that the 

optimal value of the number of total components be 

12 corresponding to six real and imaginary 

components each. Above this value, the recognition 

error rate was about 2.13% which is to be 

compared with 2.58% obtained by the conventional 

MFCC. Below 12 total components, the recognition 

error rate increases according to a power function.
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