DOI QR코드

DOI QR Code

나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구

Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device

  • 임태우 (한국과학기술원 기계공학과) ;
  • 양동열 (한국과학기술원 기계공학과)
  • Lim, Tae Woo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yang, Dong-Yol (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2015.07.29
  • Accepted : 2015.09.23
  • Published : 2015.10.01

Abstract

In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

Keywords

References

  1. Cho, H., Hemker, K., Lian, K., Goettert, J., and Dirras, G., "Measured Mechanical Properties of Liga Ni Structures," Sensors and Actuators A: Physical, Vol. 103, No. 1, pp. 59-63, 2003. https://doi.org/10.1016/S0924-4247(02)00314-X
  2. Espinosa, H. D., Berbenni, S., Panico, M., and Schwarz, K. W., "An Interpretation of Size-Scale Plasticity in Geometrically Confined Systems," Proc. of the National Academy of Sciences of the United States of America, Vol. 102, No. 47, pp. 16933-16938, 2005. https://doi.org/10.1073/pnas.0508572102
  3. Espinosa, H., Panico, M., Berbenni, S., and Schwarz, K., "Discrete Dislocation Dynamics Simulations to Interpret Plasticity Size and Surface Effects in Freestanding FCC Thin Films," International Journal of Plasticity, Vol. 22, No. 11, pp. 2091-2117, 2006. https://doi.org/10.1016/j.ijplas.2006.01.007
  4. Lee, H. J. and Ahn, D. G., "A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature," J. Korean Soc. Precis. Eng., Vol. 31, No. 1, pp. 21-28, 2014. https://doi.org/10.7736/KSPE.2014.31.1.21
  5. Haj-Ali, R., Kim, H.-K., Koh, S. W., Saxena, A., and Tummala, R., "Nonlinear Constitutive Models from Nanoindentation Tests Using Artificial Neural Networks," International Journal of Plasticity, Vol. 24, No. 3, pp. 371-396, 2008. https://doi.org/10.1016/j.ijplas.2007.02.001
  6. Mazza, E., Abel, S., and Dual, J., "Experimental Determination of Mechanical Properties of Ni and Ni-Fe Microbars," Microsystem Technologies, Vol. 2, No. 4, pp. 197-202, 1996. https://doi.org/10.1007/s005420050044
  7. Mirshams, R. A. and Pothapragada, R. M., "Correlation of Nanoindentation Measurements of Nickel Made Using Geometrically Different Indenter Tips," Acta Materialia, Vol. 54, No. 4, pp. 1123-1134, 2006. https://doi.org/10.1016/j.actamat.2005.10.048
  8. Nix, W. D. and Gao, H., "Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity," Journal of the Mechanics and Physics of Solids, Vol. 46, No. 3, pp. 411-425, 1998. https://doi.org/10.1016/S0022-5096(97)00086-0
  9. Oliver, W. C. and Pharr, G. M., "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1583, 1992. https://doi.org/10.1557/JMR.1992.1564
  10. Haque, M. and Saif, M., "Application of MEMS Force Sensors for in Situ Mechanical Characterization of Nano-Scale Thin Films in SEM and TEM," Sensors and Actuators A: Physical, Vol. 97, pp. 239-245, 2002.
  11. Espinosa, H. D., Berbenni, S., Panico, M., and Schwarz, K. W., "An Interpretation of Size-Scale Plasticity in Geometrically Confined Systems," Proc. of the National Academy of Sciences of the United States of America, Vol. 102, No. 47, pp. 16933-16938, 2005. https://doi.org/10.1073/pnas.0508572102
  12. Uchic, M. D., Dimiduk, D. M., Florando, J. N., and Nix, W. D., "Sample Dimensions Influence Strength and Crystal Plasticity," Science, Vol. 305, No. 5686, pp. 986-989, 2004. https://doi.org/10.1126/science.1098993
  13. Kiener, D., Grosinger, W., Dehm, G., and Pippan, R., "A Further Step towards an Understanding of Size- Dependent Crystal Plasticity: In Situ Tension Experiments of Miniaturized Single-Crystal Copper Samples," Acta Materialia, Vol. 56, No. 3, pp. 580-592, 2008. https://doi.org/10.1016/j.actamat.2007.10.015
  14. Yang, D.-Y., Lim, T. W., Son, Y., Barlat, F., and Yoon, J. W., "Gripless Nanotension Test for Determination of Nano-Scale Properties," International Journal of Plasticity, Vol. 27, No. 10, pp. 1527-1536, 2011. https://doi.org/10.1016/j.ijplas.2010.09.006
  15. Fritz, T., Cho, H., Hemker, K., Mokwa, W., and Schnakenberg, U., "Characterization of Electroplated Nickel," Microsystem Technologies, Vol. 9, No. 1-2, pp. 87-91, 2002. https://doi.org/10.1007/s00542-002-0199-1
  16. Kim, S.-H. and Boyd, J. G., "A New Technique for Measuring Young's Modulus of Electroplated Nickel Using AFM," Measurement Science and Technology, Vol. 17, No. 8, Paper No. 2343, 2006.