DOI QR코드

DOI QR Code

Growth of Bioenergy Crop Miscanthus sacchariflorus cv. Geodae 1 on Barren Reclaimed Land Applied with Solidified Sewage Sludge in Landfill Sites

하수슬러지 고화물을 처리한 유휴 간척지토양에서 바이오에너지작물 거대 1호의 생육특성 연구

  • An, Gi Hong (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Jang, Yun-Hui (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Um, Kyoung Ran (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Yu, Gyeong-Dan (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Ji-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Moon, Yun-Ho (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Ahn, Jong Woong (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
  • 안기홍 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 장윤희 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 엄경란 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 유경단 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이지은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 안종웅 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Received : 2015.04.26
  • Accepted : 2015.08.17
  • Published : 2015.09.30

Abstract

This study firstly provides basic data for selection of cultivatable bioenergy grass in barren reclaimed lands applied with solidified sewage sludge. The experimental plots consisted of a plot containing reclaimed land mixed with solidified sewage sludge (MSS 50), a plot covered by solidified sewage sludge (CSS 100), and an original reclaimed soil plot (ORS). The growth, biomass production of bioenergy grasses and soil chemical properties were investigated in each experimental plot for 5 years. The organic matter (OM) and total nitrogen (T-N) content in both MSS 50 and CSS 100 were considerably higher than those in ORS. In bioenergy grasses, M. sacchariflorus cv. Geodae 1 showed an excellent growth and adaptability on reclaimed land applied with solidified sewage sludge. The application of solidified sewage sludge may provided soil nutrition in the reclaimed land due to the fact that bioenergy crops grew better in soils applied with solidified sewage sludge than in untreated soils, and treated soils had higher OM and T-N content than untreated soils. This study suggests that M. sacchariflorus cv. Geodae 1 is the most suitable biomass feedstock crop for biomass production and that solidified sewage sludge may be used as a soil material for cultivation of bioenergy grass on reclaimed lands.

본 연구는 매립예정 유휴간척지 토양에 하수슬러지 고화물을 처리한 시험구 및 간척지 토양에서 적응성이 높은 바이오에너지작물을 선발하여 간척지 토양을 활용한 바이오 에너지 원료작물의 재배와 바이오매스 생산 가능성에 대한 기초자료를 얻고자 5년간 재배시험을 수행하였으며 그 결과를 요약하면 다음과 같다. 1. 매립예정 간척지 토양에 하수슬러지 고화물 처리는 바이오에너지작물의 생육에 있어서 토양양분 공급과 토양표면의 염류집적을 저해하며 토양복토재로서 효과적인 것으로 나타났다. 2. 3년간의 에너지작물 재배결과, 각 하수슬러지 고화물을 처리한 시험구 및 간척지 원지반토에서 가장 월등한 생육을 보이는 에너지작물은 거대 1호 이었다. 3. 각 시험구에서 가장 우수한 적응력을 나타내는 거대 1호의 생육은 재배 5년간 지속적으로 증가하는 경향을 보였다. 4. 정식 5년차에 하수슬러지 고화물을 처리한 시험구에서 거대 1호의 바이오매스 수량은 27.5~32.7 ton/ha 이었으며, 간척지 원지반토에서 바이오매스 수량은 18.9ton/ha로 나타나 바이오에너지작물 재배면적 확대측면에서 간척지 등의 유휴지에서도 약 15 ton/ha 이상의 바이오매스 생산 가능성이 있음을 시사한다. 5. 하수슬러지 고화물을 처리한 토양에서 거대 1호의 생육은 과영양상태를 보이며 바이오에너지 원료로서는 이용가치가 낮은 것으로 나타나, 향후 매립예정 유휴 간척지토양에서 하수슬러지 고화물을 에너지작물 재배를 위한 토양복토재로서 이용할 시에 적정 처리범위 및 배비관리에 대한 고려가 절실히 요구될 것으로 사료된다.

Keywords

References

  1. An, G. H., S. -I. Lee, B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, B. C. Kim, and S. P. Kim. 2011. Effects of application of solidified sewage sludge on the growth of bioenergy crops in reclaimed land. Kor. J. Crop Sci. 56(4) : 299-307. https://doi.org/10.7740/kjcs.2011.56.4.299
  2. An, G. H., B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, Y. M. Yoon, K. G. Park, and J. T. Kim. 2012. The effects of solidified sewage sludge as a soil cover material for cultivation of bioenergy crops in reclaimed land. Korean J. Crop Sci. 57(3) : 283-247.
  3. Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy 33 : 752-759. https://doi.org/10.1016/j.biombioe.2009.01.005
  4. Beale, C. V. and S. P. Long. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversionin cool climates? Plant Cell Environ. 18 : 641-650. https://doi.org/10.1111/j.1365-3040.1995.tb00565.x
  5. Beale, C. V., D. A. Bint, and S. P. Long. 1996. Leaf photosynthesis in the C4-grass Miscanthus giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot. 47 : 267-273. https://doi.org/10.1093/jxb/47.2.267
  6. Christian, D. G., A. B. Riche, and N. E. Yates. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28 : 320-327 https://doi.org/10.1016/j.indcrop.2008.02.009
  7. Clifton-Brown, J. C., I. Lewandowski, B. Andersson, G. Basch, D. G. Christian, J. B. Kjeldsen, U. Jorgensen, J. V. Mortensen, A. B. Riche, K. -U. Schwarz, K. Tayebi, and F. Teixeira. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 93 : 1013-1019. https://doi.org/10.2134/agronj2001.9351013x
  8. Fernando, E. M., B. V. Maria, P. L. Stephen, and A. B. German. 2008. Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agri. Forest Meteorology. 148 : 1280-1292 https://doi.org/10.1016/j.agrformet.2008.03.010
  9. Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197. https://doi.org/10.1023/A:1008693214629
  10. Hyun, J. H. and M. G. Kim. 2007. Advanced Technologies in liner and cover system of landfill. J. of KSEE. 29(1) : 3-7.
  11. Kang, B. H. and S. I. Shim. 1998. Screening of saline tolerant plants and development of biological monitoring technique for saline stress. I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Korean J. Environ. Agri. 17(1) : 26-33.
  12. Kang, K., S. G. Hong, K. J. Ji, U. Y. Choi, H. H. Lee, H. J. Kim, and S. J. Park. 2014. Monitoring biota in Giant Miscanthus fields. J. Korean Soc. Agri. Engineers. 56(1) : 88-99.
  13. Kim, S., J. H. Jeong, W. Y. Choi, J. H. Lee, K. B. Lee, and I. B. Im. 2013. Change of vegetation characteristics and soil chemical properties at seamangeum reclaimed land in Korea. Weed Turf. Sci. 2(3) : 260-266. https://doi.org/10.5660/WTS.2013.2.3.260
  14. Kwak, Y. S., J. K. Hwangbo, H. C. Yun, S. J. Kang, and J. S. Kang. 2005. Evaluation of sludge-derived bio-soil for landscape management. RIST. 19(1) : 11-14.
  15. Lee, C., H. B. Kim, D. G. An, H. C. Yoon, S. J. Kang, and J. S. Kang. 2006. Utilization of dried and solidified sewage sludge as daily cover material in waste landfill. Korean Geo-Environmental Conference. 245-254.
  16. Lee, S. H., Y. An, S. H. Yoo, and S. M. Lee. 2000. Changes in early stage vegetation succession as affected by desalinization process in Dae-Ho reclaimed land. Korean J. Environ. Agric. 19(4) : 364-369.
  17. Lewandowski, I., J. C. Clifton-Brown, J. M. O. Scurlock, and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19 : 209-227. https://doi.org/10.1016/S0961-9534(00)00032-5
  18. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  19. NIAST. 2000. Method of Soil and Plant Analysis, National Institute of Agriculture Science and Technology.
  20. Ryu, J. H., D. Y. Chung, S. W. Hwang, K. D. Lee, S. B. Lee, W. Y. Choi, S. K. Ha, and S. J. Kim. 2010. Patterns of leaching and distribution of cations in reclaimed soil according to gypsum incorporation rate. Kor. J. Soil Sci. Fert. 43(5) : 596-601.
  21. Song, U. and Lee, E. G. 2010. Ecophysiological responses of plants after sewage sludge compost applications. J. Plant Biol. 53 : 259-267. https://doi.org/10.1007/s12374-010-9112-0
  22. Yoo, N. J., Y. G. Kim, B. S. Park, and H. I. Jeong, 1999. A feasibility study on the use of liner and cover materials using sewage sludge. Korean Society Geotechnical Engineering. 15(2) : 43-71.
  23. Wei, Y. and Liu. Y. 2005. Effects of sewage sludge compost application on crops and cropland in a 3-year field study. Chemosphere. 59 : 1257-1265. https://doi.org/10.1016/j.chemosphere.2004.11.052