DOI QR코드

DOI QR Code

주요 국산밀 품종과 내고온성 터키 유전자원을 이용한 내고온성 관련 SSR 마커 평가

Evaluate of SSRs for Heat Tolerance using Korean Major Wheat Cultivars and Heat Resistant Turkey Resources

  • 손재한 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 김경훈 (농촌진흥청, 국립식량과학원, 남부작물부) ;
  • 정영근 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 박종철 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 김경호 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 김양길 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 오영진 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 송태화 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 김보경 (농촌진흥청, 국립식량과학원, 작물육종과) ;
  • 강천식 (농촌진흥청, 국립식량과학원, 작물육종과)
  • Son, Jae-Han (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Kim, Kyeung-Hoon (Department of Southern Area, National Institute of Crop Science, RDA) ;
  • Cheong, Young-Keun (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Park, Jong-Chul (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Kim, Kyong-Ho (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Kim, Yang-Kil (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Oh, Young-Jin (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Song, Tae-Hwa (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Kim, Bo-kyeong (Crop Breeding Division, National Institute of Crop Science, RDA) ;
  • Kang, Chon-Sik (Crop Breeding Division, National Institute of Crop Science, RDA)
  • 투고 : 2015.07.01
  • 심사 : 2015.08.25
  • 발행 : 2015.09.30

초록

밀의 등숙기간, 종자 수, 종자무게와 관련된 SSR 마커 14개를 이용하여 터키에서 분양받은 내고온성 유전자원 23개와 국산밀 품종 7개, Chinese spring 1개 등 31개를 분석한 결과, 전체 86개의 대립유전자(평균 6.14개)가 확인되었다. 평균 PIC 값은 0.64로 나타났다. 다형성 분석을 통한 마커 데이터를 이용하여 계통 분석을 한 결과 크게 세 그룹으로 형성되었다. 올밀이 가장 바깥 그룹으로 형성되었고 올그루, 고소, 조품 등이 터키자원과 다르게 단일 그룹으로 형성되었다. 금강, 조경, 백중 등 세 품종은 터키 자원들과 같은 그룹으로 나타났지만 밀접하게 연관되어 있지는 않은 것으로 나타났다. 국내 품종 중 올, 올그루, 조품, 고소 등 4개와 금강, 조경, 백중 등 3개가 서로 다른 그룹으로 형성되었다. 두 그룹의 차이는 파성 II와 III의 차이로 구별되었다.

High temperature is one of major environmental stress. Heat tolerance managing is difficult through the phenotypic selection, so marker assistant selection (MAS) using molecular markers like as RAPD, SSR etc. was tried to select useful traits for heat tolerance. Fourteen SSR markers reported by previous research were selected for this research. We tried to evaluate 14 SSR markers for MAS using 31 useful wheat resources including 24 crossing line from Turkey, six Korean wheat cultivars and Chinese spring. The average of the number of alleles and PIC values in this study were 6.14 and 0.64, respectively. Two major clades and four sub clades were grouped by phylogenetic tree using UPGMA. Four Korean wheat cultivars were distinct from other Turkey resources in the phylogenetic dendrogram. From the results, we expected that these markers were able to adapt to screening wheat genotyping for heat tolerance.

키워드

참고문헌

  1. RDA. 2012. Standard of research and analysis for agricultural technology. pp. 339-365.
  2. Anderson, J. A., R. W. Stack, S. Liu, B. L. Waldron, P. Langridge, E. S. Lagudah, T. A. Holton, R. Appels, A. D. Fjeld, C. Coyne, B. Moreno-Sevilla, J. M. Fetch, Q. J. Song, P. B. Cregan, and R.C. Frohberg. 2001. DNA markers for fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 102 : 1164-1168. https://doi.org/10.1007/s001220000509
  3. Bhullar, S. S. and C. F. Jenner. 1985. Differential responses to high temperature of starch and nitrogen accumulation in the grain of four cultivars of wheat. Aust. J. Plant Physiol. 12 : 363-375. https://doi.org/10.1071/PP9850363
  4. Boyer, J. S. 1982. Plant productivity and environment. Science 218 : 443-448. https://doi.org/10.1126/science.218.4571.443
  5. Chen, J. M., X. Xue, D. Cai, K. B. Jensen, and N. J. Chatterton. 1998. Development and characterization of Elymus rectisetus species and accession-specific RAPD markers. In: A. E. Slinkard (ed.), Proc. 9th Int. Wheat Genet. Symp. 3 : 98-101.
  6. Univ. Extension Press. Univ. of Saskatchewan, Saskatoon. Distelfeld, A., C. Uauy, T. Fahima, and J. Dubcovsky. 2006. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 169 : 753-763. https://doi.org/10.1111/j.1469-8137.2005.01627.x
  7. Gibson, L. R. and G. M. Paulsen. 1999. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science 39(6) : 1841-1846. https://doi.org/10.2135/cropsci1999.3961841x
  8. Giroux, M. J. and C. F. Morris. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch surface friabilin. Theor. Appl. Genet. 95 : 857-864. https://doi.org/10.1007/s001220050636
  9. Hays, D. B., J. H. Do, R. E. Mason, G. Morgan, and S. A. Finlayson. 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 172 : 1113-1123. https://doi.org/10.1016/j.plantsci.2007.03.004
  10. Houghton, J., Y. Ding, D. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell, and C. Johnson. 2001. IPCC. Climate Change, The scientific basis. Contributions of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press pp. 1-182.
  11. Lande, R. and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124 : 743-756.
  12. Liu, B. H. 1998. Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca Raton.
  13. Mason, R. E., S. Mondal, F. W. Beecher, A. Pacheco, B. Jampala, A. M. H. Ibrahim, and D. B. Hays. 2010. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174(3) : 423-436. https://doi.org/10.1007/s10681-010-0151-x
  14. McCouch, S. R., S. Temnykh, A. Lukashova, and J. Coburn. 2001. Microsatellite Markers in Rice: Abundance, Diversity and Applications. In: Rice Genetics IV. International Rice Research Institute (IRRI), Manila pp. 117-135.
  15. Mclauchlan, A., F. C. Ogbonnaya, B. Hollingsworth, M. Carter, K. R. Gale, R. J. Henry, T. A. Holten, M. K. Morell, L. R. Rampling, P. J. Sharp, M. R. Shariflou, M. G. K. Jones, and R. Appels. 2001. Development of PCR-based DNA markers for each homoeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J. Agric. Res. 52 : 1409-1416. https://doi.org/10.1071/AR01036
  16. Naghavi, M. R., M. Mardi, S. M. Pirseyedi, M. Kazemi, P. Potki, and M. R. Ghafari. 2007. Comparison of genetic variation among accessions of Agilopstaushii using AFLP and SSR markers, Genet Resour. Crop. Evol. 54 : 237-240. https://doi.org/10.1007/s10722-006-9143-z
  17. Nam, J. H., H. S. Song, H. H. Park, H. Y. Heu, M. W. Park, K. H. Park. C. W. Rho, S. Y. Nam, J. I. Ju, C. B. Park, Y. S. Lee, S. G. Park, and D. H. Kim. 1998. A new high milling, early maturing, semi-dwarf and white grain wheat variety "Keumkangmil" with good bread quality. RDA. J. Crop Sci. 40(2) : 81-87.
  18. Prins, R., J. Z. Groenewald, G. F. Marais, J. W. Snape, and R. M. D. Koebner. 2001. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl. Genet. 103 : 618-624. https://doi.org/10.1007/PL00002918
  19. Rohlf, F. J. 1998. NTSYS-PC. Numerical taxonomy and multivariate analysis system, version 2.00. Exeter Software, Setauket, NY.
  20. Sadat, S., K. A. Saeid, M. R. Bihmta, S. Torabi, S. G. H. Salekdeh, and G. A. L. Ayeneh. 2013. Marker assisted selecition for heat tolerance in bread wheat. World Applied Sciences Journal 21(8) : 1181-1189.
  21. Salem, K. F. M., A. M. El-Zanaty, and R. M. Esmail. 2008. Assesing diversity using morphological characters and microsatellite markers. World J. Agric. Sci. 4(5) : 538-544.
  22. Sharp, P. J., S. Johnston, G. Brown, R. A. McIntosh, M. Pellota, M. Carter, H. S. Bariana, S. Khatkar, E. S. Lagudah, R. P. Singh, M. Kairallah, R. Potter, and M. G. K. Jones. 2001. Validation of molecular markers for wheat breeding. Aust. J. Agric. Res. 52 : 1357-1366. https://doi.org/10.1071/AR01052
  23. Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch. 2001. Computational and experimental analysis of mecrosatellites in rice (Oryza sativa L.): frequency, lenth variation, transposon association, and genetic marker potential. Genome Res. 11 : 1441-1452. https://doi.org/10.1101/gr.184001
  24. Wardlaw, I. F., I. A. Dawson, P. Munibi, and R. Fewster. 1989. The tolerance of wheat to high temperatures during reproductive growth. I. Survey rocedures and general response patterns. Aust. J. Agr. Res. 40 : 1-13. https://doi.org/10.1071/AR9890001
  25. Yang, J., R. G. Sears, B. S. Gill, and G. M. Paulsen. 2002. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126 : 275-282. https://doi.org/10.1023/A:1016350509689
  26. Zeb, B., I. Ahmad Khan, S. Ali, S. Bacha, S. Mumtaz, and Z. A. Swati, 2009. Study on genetic diversity on Pakistani wheat varieties using simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 8(17) : 4016-4019.
  27. Zhang, W. and C. Smith. 1992. Computer simulation of marker-assisted selection utilizing linkage disequilibrium. Theor. Appl. Genet. 83 : 813-82.

피인용 문헌

  1. 삼차망을 가진 담근먹이용 청보리(Hordeum vulgare L.) 신품종 '유진' vol.39, pp.4, 2015, https://doi.org/10.5333/kgfs.2019.39.4.243