
디지털산업정보학회 논문지 제11권 제3호-2015년 9월

http://dx.doi.org/10.17662/ksdim.2015.11.3.031

디지털산업정보학회 논문지 31

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구*

알람 삼술**ㆍ최 광 석***

A Custom Code Generation Technique for ASIPs from High-level Language
Alam S. M. ShamsulㆍChoi Goangseog

<Abstract>

In this paper, we discuss a code generation technique for custom transport triggered

architecture (TTA) from a high-level language structure. This methodology is implemented

by using TTA-based Co-design Environment (TCE) tool. The results show how the scheduler

exploits instruction level parallelism in the custom target architecture and source program.

Thus, the scheduler generates parallel TTA instructions using lower cycle counts than the

sequential scheduling algorithm. Moreover, we take Tensilica tool to make a comparison with

TCE. Because of the efficiency of TTA, TCE takes less execution cycles compared to Tensilica

configurations. Finally, this paper shows that it requires only 7 cycles to generate the parallel

TTA instruction set for implementing Cyclic Redundancy Check (CRC) applications as an

input design, and presents the code generation technique to move complexity from the

processor software to hardware architecture. This method can be applicable lots of channel

Codecs like CRC and source Codecs like High Efficiency Video Coding (HEVC).

Key Words : Transport Triggered Architecture(TTA), TTA-based Co-design Environment (TCE),
Instruction Level Parallelism (ILP), Architecture Definition File(ADF), Implementation
Definition File(IDF)

Ⅰ. Introduction
1)

To allow easy customization of processor design,

TTA is one of the most suitable ASIP architecture

templates. To improve the processor speed,

concurrent execution of instructions known as

　* 이 논문은 2015년 조선대학교 연구비 지원을 받아 연구되

었음.

　** Khulna대학교 전자통신공학과 조교수

*** 조선대학교 정보통신공학과 교수(교신저자)

Instruction Level Parallelism (ILP) is very

important. This is an attractive approach to satisfy

high performance requirements. Due to the

flexibility and scalability behavior of TTA

architecture, it is an interesting choice for the

design of ASIPs. TTAs are constructed from

multiple, concurrently-operating function units

(FUs), and each FU supports RISC-style operations.

That means a TTA processor does not need to

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

32 제11권 제3호

<Fig. 1> Example of TTA processor data path with 3
instructions for three buses

include complex instruction dependency detection

hardware logic, which simplifies the processor

implementation [1].

In TTA, operations are started as side effects of

writing operand data to the trigger port of the FU.

These FUs are internally pipe-lined, and it is

possible to implement one or more operations using

FUs. When the operation execution is triggered, the

result can be read from the output port after the

time defined by the static latency of the operation.

Figure 1 shows an example of a TTA processor

data-path that consists of FUs, register files (RFs), a

Boolean RF, and a custom interconnected network

[2]. These data transports are clearly programmed

and written to a trigger port of functional units.

Figure 1 also represents instructions, defined as

moves, for three buses [2]. An explanation of these

instructions is given in the next section. In this

figure, moves are defined for three buses

performing an integer summation loaded from

memory and a constant. Besides the code

generation technique using TCE, a comparison

between TCE and Tensilica tools is displayed in

terms of cycle count. At first, we will discuss an

ASIP oriented design flow using XtensaXplorer (XX)

integrated development environment (IDE) as the

design frame work under Tensilica tool. Then, we

will explain the code generation techniques using

TCE, and finally the comparison result between

TCE and IDE will be portrayed.

Using the XX, it is possible to integrate software

development, processor optimization and

multiple-processor system-on chip (SoC) architecture

into one common platform. From it, we can profile

our input application code to identify the cycle

consumed by the function used in input design.

Then, we can make necessary change to speed up

that code. There are various building blocks in the

Xtensa architecture. The system designer should

specify the different blocks of configuration function

units. Advanced designer-defined functions are one

kind of hardware execution units and registers.

Based on these properties of this architecture, we

have taken different configurations of architectures

to simulate our input application. As mentioned

earlier, beside the TTA code generation of CRC 32,

we are going to define several experiments to find

a good XX processor tuned to this application. For

this reason, we have taken 16 preconfigured cores

and the result is tabulated after simulating the

input application using those cores. Then, we apply

some custom logic levels to processor for

accelerating the processor performance. These

preconfigured cores are divided into four broad

categories; Communication, HiFi/Audio,

Video/Imaging and Diamond or General Purpose

Controller.

Recently, Tensilica introduced the

high-performance, small, low-power 16-bit

dual-MAC (Multiply-Accumulate) Digital Signal

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

디지털산업정보학회 논문지 33

<Fig. 2> A simplified architecture of ConnXD2 DSP Engine [7]

Processor (DSP) engine. This communication

configuration core is known as ConnX D2DSP

engine[7]. In this paper, two ConnX configurations

known as XRC_D2MR and XRC_D2SA are used for

simulation and show very good performance

between all other configurations. The XRC_D2xx

configuration includes dual 16-bit MAC units and

40-bit register file to the base RISC architecture of

the Xtensa LX processor. This engine uses two-way

Single Instruction Multiple Data (SIMD) instructions

to provide high performance on vectorizable C

code. It implements an improved form of Very

Long Instruction Word (VLIW) instructions and

five-stage pipeline.

Figure 2 shows the basic architecture of the

ConnX D2 engine with two MAC units with

register banks [7]. The ConnX D2 instruction set is

designed for numeric computations like

add-subtract, add-compare or add-modulo etc

required for digital signal processing. This ConnX

D2 core exploits seven DSP-centric addressing

scheme mentioned in figure 2. In order to provide

excellent performance, it includes data manipulation

instructions like shifting, swapping, and logical

operations. As mentioned before, the input design is

CRC 32 and it has huge number of shifting,

swapping and logical operations. So, this processor

architecture is suitable for the input design.

For SoC design, Xtensa LX processor provides

the I/O bandwidth, compute parallelism, and

low-power optimization equivalent to

hand-optimized, register transfer level

(RTL)-designed non-programmable hardware blocks.

The HiFi/Audio engine (330HiFi) is optimized for

audio processor, voice codecs and pre- and

post-processing modules. This configuration

includes the Xtensa LX processor that is the basis of

the 330HiFi processor. It extends the HiFi 2 Audio

Engine instruction set architecture (ISA) for

hardware perfecting, 32x24 bit multiply/accumulate

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

34 제11권 제3호

operations, circular buffer loads and stores and

bidirectional shift. There are two main components

in this engine: a DSP subsystem that operates

primarily on 24-bit data items and other one is a

subsystem to assist with bit stream access and

variable length encoding and decoding [9]. So this

architecture is fully compatible for audio/video

compression or processing operation.

Another category of processor known as

Diamond or General Purpose Controllers are

optimized for SoC design and it can be used in any

application where a controller is required. Diamond

controllers are based on a modern RISC

architecture. Among these controllers, Diamond

106Micro and 108Mini are cache-less controllers and

designed for lowest area and power. The Diamond

106Micro has an iterative, multi-cycle multiplier and

uses a non-windowed 16-entry address register

(AR) file. So it is ideal for fast context switching

and does better performance for nested function

calls. The diamond 108Mini has full 32x32

multiplier and divider and 32-bit input and output

general-purpose I/O (GPIO) ports. The Diamond

212GP and 233L are applicable for medium level

performance and they have caches, local memories,

divider, 32-bit input/output GPIO ports and other

DSP instructions. Therefore, Diamond 212GP and

33L are ideal for hard drive controller, imaging,

printing, networking etc. The Diamond 570T can

generate up to 64-bit VLIW instruction bundles as

per the requirement of input design. This VLIW

instruction contains two or three operations or

instructions. The 570T processor also includes 32-bit

input and output GPIO ports with 32-bit input and

output First-In First-Out (FIFO) interface. Therefore,

this FIFO interface provides a very useful

mechanism for the processor to communicate with

other RTL blocks, devices and processors [9]. Next,

we will show the comparative performance of all

these processor architecture.

To accelerate the speed of the processor in

Tensilica, it is possible to apply the custom

operation in input design. Tensilica Instruction

Extension (TIE) language is a powerful way to

optimize the processor and is used to describe new

instructions, new registers and execution units that

are automatically added to the Xtensa processor.

The processor take TIE files as input and creates a

version of Xtensa processor to complete the tool

chain incorporate with new TIE instruction.

Figure 3 shows the TIE generation technique

using Xtensa processor. This TIE can be generated

automatically or manually, depending on the

performance of TIE instructions. In this paper, we

have used TIE instructions generated automatically

to profile our input design and it shows good

performance. So using TIE instruction, processor

creates single instructions that perform the multiple

general purpose instruction.

As mentioned above, TIE instructions improve

the execution speed of the input application

running on Xtensa processor. Some other techniques

like Flexible Instruction Extensions(FLIX), and SIMD

can be executable through TIE operation. In this

paper, we applied only FLIX instruction to the

input application.

In Xtensa, FLIX instructions are multi-operation

instructions (32-bit or 64-bit long) that allow a

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

디지털산업정보학회 논문지 35

<Fig. 3> Generation of custom TIE instructions [10]

processor to perform multiple, simultaneous,

independent operations. In FLIX, processors are

encoding the multiple operations into a wide

instruction word. The Xtensa C compiler (XCC)

takes the FLIX operation and converts it into FLIX

format instruction as per the requirements to

accelerate the input code [7]. The performance of

FLIX instruction will be discussed in simulation

result section.

Ⅱ. TTA Programming
In TTA programming, data transports are

required to read and write the operand values, and

the operation is triggered when data is written to a

trigger port. Sequential and parallel TTA programs

represent the sequence of instructions depending on

a number of buses. In sequential TTA

programming, the moves are sequentially executed

because of single bus architecture. Therefore, its

code is not scheduled to be executed in a target

structure. In a parallel TTA program, a set of

moves is executed using a multiple bus structure.

Therefore, each bus will be utilized in parallel in

the same clock cycle. Thus, ILP is exploited in a

parallel TTA architecture. An example of a simple

TTA program is given below [3]:

1: 100 ->RF. 1 ; 500 -> RF. 2

2: RF. 1 -> ALU. add. 1; RF. 2 -> ALU. sub. 1

3: 50 ->ALU. add. 2 ; 100-> ALU. sub. 2

4: ALU. add. 3 ->RF. 1 ; ALU. sub. 3 ->RF. 2

5: RF. 1 ->ALU. EQ. 1 ; RF. 2 -> ALU. EQ. 2

6: !ALU. EQ. 3->bool; ………

7: !bool 2-> GCU. jamp. 1

In here, two buses are used in TTA architecture

so that a couple of instructions are executed in one

clock cycle. In Line 1, two general-purpose registers

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

36 제11권 제3호

take constant values from the immediate unit and

store those values in the ADD (addition) and SUB

(subtraction) modules of Arithmetic Logic Unit

(ALU) through a load store unit (LSU). This is

explained in Line 2. After finishing the similar

operations in Lines 3 and 4, RF1 and RF2 hold the

output values of ADD and the SUB module of

ALU. Line 5 shows that these two values from

GPRs are applied to two inputs of the equator (EQ)

module of ALU. In Line 6, the result of the

comparison is transferred to a Boolean register,

which is used in conditional execution. In the last

line, the value of the Boolean register is evaluated

and the jump operation of the global control unit

(GCU) is triggered in case a Boolean register value

is false. That means the program execution is

transferred back to Line2 when the values of RF1

and RF2 are not equal. For this example, the second

operand of the ADD, SUB, and EQ operations, and

the first operation of the JUMP operation, are

triggering ports. Therefore, this whole comparison

operation is done in 7cycles, and each cycle

executes two operations for two bus architectures.

That means, depending on this ILP, the speed of

the processor is identified. Single bus architecture

would require almost 12 cycles to execute this

operation. The assembly notations of this example

are taken from the TCE tool [3].

In TTA architecture, it is possible to add a new

instruction to the target processor which

implements arbitrary functionality. This custom

instruction reduces longer chain operations to a

single custom operation. To add this custom

instruction, the ADF files of the TTA processor

should be modified by introducing a new FU. In

this paper, we showed the ways in which the

instructions set are generated from each custom

function unit. The generating procedure of each

efficient custom function unit, modification of

ADFs, and reference design are discussed in the

author’s other paper [4]. The TTA code generation

techniques for the custom architecture named

ascrcfast. adf, are discussed in detail. Moreover, this

new custom architecture for implementing CRC is

very efficient in terms of cycle count which is also

discussed in-depth in [4].

Ⅲ. Code Generation Method using TCE
Tool

In the previous section, we discussed the

assembly instruction of the TTA processor, which

was applied to ADFs in the TCE tool [6]. In this

section, we will discuss the code generation

technique which is the main part of whole design

flow in the TCE structure. Before going to discuss

the code generation technique using TCE tool, we

will show the advantage of customized code

generation for TTAs. It is well-known that VLIW

and TTA based processors exploit the ILP at

compile time. Here, compiler finds the parallel

instructions before run time. VLIWs are constructed

from multiple, concurrently operating FUs where

each FU supports RISC style operation. But the

traditional VLIW processor architecture is not

suitable for scalable operation because of its

complex connectivity of required data-path

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

디지털산업정보학회 논문지 37

<Fig. 4> Code generation and analysis [3]

<Fig. 5> Data flow in the ILP compiler [5]

especially for register file and bypass circuit. The

data bandwidth and instruction bandwidth depend

on the number of selected FUs. However, when all

FUs are utilized, the available data bandwidth is

still rarely utilized. For that reason, the concept of

TTA and its code generation techniques are

required.

The complete design flow is divided into four

phases: Initialization, Design Space Exploration,

Code Generation, and Processor & Program Image

Generation [3].

In the initialization phase, the sequential code

form of the TTA Program Exchange Format (TPEF)

is generated by compiler like TCECC (TCE C

Compiler) including the ADF. If this compiler is

provided with multiple compilation units, the TPEF

linker links them to a single TPEF binary file. This

TPEF file format is used for storing unscheduled,

partially scheduled, and scheduled TTA programs

to apply input to TCE. The compiler used here is

known as a frontend compiler because it has no

more use in the rest of the TCE toolset. Now, for

TCE version 1.5, this compiler can compile only in

the high level C language.

Design space exploration is used to estimate the

cost for different starting point architectures. The

goal of this phase is to find an optimal architecture

for input design. Here the explorer removes the

unused connections and resources from the starting

point architecture, which is more beneficial in terms

of area, power, and time. It should be noted that if

a program is simulated using various types of

efficient target architecture modified either

automatically or manually, parallel simulation is

invoked to increase processor speed. So, the

Explorer creates a database named the Exploration

Result Database (ExpResDB), which contains the

configuration of evaluations during exploration. It

also creates an Implementation Definition File (IDF)

for estimating the cost of explored target

architecture.

The most influential and demanding part of TCE

design flow is code generation and analysis.

Figure 4 shows the code generation procedure of

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

38 제11권 제3호

< Fig. 6> Structure and data flow in a TCE compiler [5]

the TCE tool. In this stage, the sequential program

is converted to parallel instructions by efficiently

utilizing the given target architecture. It is very

difficult for a programmer to write a thousand lines

of TTA program manually, even if there is a use of

semi-automatic design space exploration. Moreover,

hand written code is not always efficient. Therefore,

in this stage, the scheduler takes all responsibility

for the performance of the entire toolset [3]. Figure

5shows the important concepts regarding an

instruction scheduling compiler for the TTA

architecture. Generally, the main working principle

of a compiler is to translate a program written in a

source language to another target language.

In TCE, the compiler is used to translate high

level language (HLL) like C into executable code

for TTA. It should be noted that, during this

compilation, it assigns processor resources to every

data transport, while avoiding any conflicts in

resource usage [5]. Moreover, at the same time, all

possible ILP should be exploited to facilitate

efficient code execution. Figure 5 show that an ILP

compiler has three parts: a front-end, a middle-end,

and a back-end [5].

The front-end translates the source application

code written in HLL into intermediate program

representation (IR), and this IR is not compiled for

any particular target architecture. All possible

auxiliary data, including IR, is the input to the

middle-end of compiler (or back-end if there is no

optimization performed on IR). The middle-end

executes high-level language and architecture

independent optimization on IR produced by the

front-end. To increase efficient ILP, this

optimization includes dead-code elimination,

function in-lining, and loop unrolling. In the

back-end, the compiler reads machine-independent

IR, the ADF, and profiling information. Then it

translates the code into parallel code for the target

architecture. The back-end performs several

optimizations using control analysis, data flow

analysis, and memory reference disambiguation

analysis. These optimizations comprise register

allocation and instruction scheduling, which are

important parts of generating efficient code

executables for the target processor [5].

Figure 6 shows the basic structure of the TCE

compiler, which follows the same configuration of

the re-targetable ILP compiler explained in Figure 5.

The front-end of the TCE compiler is the Low Level

Virtual Machine (LLVM) C front-end, which

transforms an application written in C to LLVM

byte-code. This LLVM byte-code, known as IR, is

an architecture-independent intermediate program

representation used in the LLVM framework [5].

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

디지털산업정보학회 논문지 39

<Table 1> CRC32 profile status on different processor
configurations

Active Processor
Configuration

Total
cycles

Active Processor
Configuration

Total
cycles

DC_C_106 micro 1987 DC_D_212GP 7054

DC_C_108 mini 1940 DC_D_233L 10804

DC_C_212GP 7050 DC_D_330 HiFi 3200

DC_C_233L 10,830 DC_D_545CK 1601

DC_C_330 HiFi 3195 DC_D_570T 6,022

DC_C_545CK 1604 XRC_D2MR 2,744

DC_C_570T 6017 XRC_D2SA 1,594

DC_D_106 micro 1990 XRC_D2SA_TIE 1,572

DC_D_108 mini 1944 XRC_D2SA_FLIX 1267

Then this IR is optimized in the middle-end and

simulated with the LLI for verification. The

back-end of the TCE compiler requires the

architecture definition file of the target processor. In

this stage, the LLVMback-end performs

machine-dependent code transformations like

instruction selection and register selection. After

passing this stage, the optimized code contains both

machine independent and dependent information.

Then this optimized code is applied to the input of

the TCE back-end. The back-end performs

instruction scheduling, applies TTA specific

optimizations, and executes the code generation

process. In this paper, we show this optimized code

generated for a custom CRC architecture.

Ⅳ. Simulation Results
In previous sections, the compiler characteristics

are discussed elaborately. We already developed

many algorithms in information and communication

areas.[11-12] But, in this section, we will explain the

generated TTA instructions using efficient custom

target architecture for CRC implementation. In this

paper, a custom ADF file named crcfast. adf is

created by adding a custom FU known as

CRCFAST to the minimal architecture shown in

figure 1.

At first, we will show the simulation result using

Tensilica processor andcompare the result with TTA

processor. Finally, we will show the generated code

using TTA processor.

To compile an application in XX, we required to

inform Xplorer project to compile the processor

configuration to compile the project on and the

build target. A set of build properties like compiler,

assembler and linker contains in a build target.

In this work, we took the “release” version of the

target library using level-3 optimization and apply

FLIX & TIE instructions. Now we are compiling the

CRC 32 reference code along with its library for

each of the sixteen target cores and then run a

profile execution.

Table 1 shows the result of all target processor in

terms of cycles. We can see that, without custom

instruction operation XRC_D2SA is the best in

comparison to other processors. Moreover, in

Diamond controller processor, 545CK configuration

outperforms compare to others. We see that, 545CK

processor contains many DSP instruction extensions

and SIMD execution units. If we see the

disassembly information of input function, it is

easily possible to find the step by step cycle

consumptions by main and children functions as

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

40 제11권 제3호

<Table 2> Profile of different funcions in CRC 32 for
XRC_D2MR configurations

Active Processor
Configuration Cycle Consumption

XRC_D2SA
Main Reflect CRCFAST

1026 841 1026

XRC_D2SA_FLIX 715 534 702

<Table 3> Comparison of cycle counts for the TCE and
Tensilica processors

TCE Tensilica
Architecture Name

Cycle

Count

Cycle

Count

Architecture

Name

minimal.adf
Bus 1 5031

2744 XRC_D2MR
Bus 2 2244

custom.adf 958 1601 DC_D_545CK

custom_1.adf 829 1572 XRC_D2SA_TIE

crcfast.adf
Bus 1 15

1267 XRC_D2SA_FLIX
Bus 2 7

per their configuration details. We are not going to

discuss all these architectural analysis.

As mentioned before, ConnX D2 architecture is

suitable for communication and for its rich

hardware resources, XRC_D2SA configuration

without TIE or FLIX instruction, takes 1594 total

cycles for CRC 32 application.

Table 2 shows the cycle status consumed by

different functions of CRC 32 input application.

Therefore, from its profile status, CRCFAST custom

function consumes highest 1026 cycles and if we see

the disassembly profile of CRCFAST function, it

takes many load, add, move and logical operations.

So, when we think in terms of hardware, these

operations are rewiring certain bits from input to

output. For this reason, we develop TIE and FLIX

instructions and include these custom instructions

to the processor. Significant improvement in terms

of cycle counts was found from table 1 and table 2,

the XRC_D2SA_FLIX configuration took only 1267

cycles and CRCFAST took only 702 cycles which is

almost 32% improvement compared to without

FLIX operation.

Now we will compare the performance results of

XX and TCE tools. It is necessary to mention that

we already developed different configuration

architectures using TCE tool and these architecture

developing procedures are discussed in ref [4]. Like

TIE and FLIX instructions in Xtensa, in TCE, we

can add custom function unit to basic architecture.

As a result, processor took less cycles to execute the

input application. In TCE tool, there are some other

techniques like modify the RFs, include more FUs

by observing the cycle count of ALU& LSU,

increase the number of bus etc to improve the

performance of architectures those are mentioned in

[4].

Table 3 shows the comparative result between

two processor tools. Under TCE tool, minimal. adf

is the minimum structure architecture and is

simulated for single and double bus condition.

Based on the resource utilization, minimal. adf,

custom. adf, custom_1. adf and crcfast. adf are

generated including RF unit, custom FU etc. Form

table 3, it can be shown that, for bus number 2,

crcfast. adf took only 7 cycles to implement this

input application.

Similarly, in XX, some custom operations like

FLIX and TIE instructions are used to improve the

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

디지털산업정보학회 논문지 41

<Table 4> TCE assembly instructions for CRC implementation
with crcfast.adf

Cycle Bus 1 Bus 2
1 4 -> ALU.in2,

16777208 ->

ALU.in1t.sub ;

2
0 ->

CRCFAST.trigger.crcfast,
ALU.out1 -> RF.0 ;

3 gcu.ra -> LSU.in2, _exit ->gcu.pc.call ;

4 ALU.out1 -> LSU.in1t.stw, ... ;

5 8 -> LSU.in1t.stw,
CRCFAST.output1

->LSU.in2;

6 ..., ... ;

7 0 -> LSU.in2, 4 -> LSU.in1t.stq ;

performance of processor cores. From the table 3,

XRC_D2SA_FLIX architecture takes 1267 cycles,

which is costly in terms of cycle count compared to

TCE processor. In TTA processor, no extra cycles

are required for executing the operation of the

instructions. It is occurred as the side effect of data

transport.

Operation definitions of processors designed with

TCE are stored in a database called the Operation

Set Abstraction Layer (OSAL) [3]. OSAL stores the

simulation behavior of each operation. For

designing a custom FU like CRCFAST, we need to

write its operation in C++ and compile to plug-in

modules, which can be linked dynamically to

runtime simulator.

In TCE, custom operations can be applied by

using a tool called Operation Set Editor (OSEd).

This OSEd is a graphical user interface to edit and

debug the OSAL operation definitions. The

following table shows the TTA programs generated

for using custom FU CRCFAST.

Table 4shows the TCE instructions of the CRC

implementation using the crcfast. adf structure. By

using two buses, the parallel executions are

executed and the total cycle count is dropped to 7.

These seven executions are mentioned in table 4. In

cycle 5, the output of CRCFAST FU is transferred

to the input LSU through Bus No. 2. If there is one

bus to simulate the crcfast architecture, this parallel

execution is going to become sequential executions

and take more cycle counts. Parallel execution

depends on the number of independent operations,

otherwise it takes operation latency and the

instruction compiler must also take operation

latencies into account.

Ⅴ. Conclusions
At first, we profile our input application using

different configuration cores under Tensilica tool.

Then, we discuss about the custom level operation

and apply TIE and FLIX instructions to ConnX D2

core for getting improved performance. Besides it,

this paper represents a framework that is used to

generate the code information of TTA architecture

from unscheduled HLL to scheduled TTA

instructions for performing ILP. We discuss this

framework as a part of the compiler back-end in

TCE. This framework takes two inputs: the first is

the generic byte-code of unscheduled source

applications translated by a compiler front-end; the

second one is a custom function architecture named

crcfast. adf. Then, this framework transforms the

user-defined code and scheduling chain, optimizes

the scheduler, and compiles the source program to

a form executable for custom target architecture. As

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

42 제11권 제3호

a result, the parallel instructions, discussed in

simulation results section, are formed. By using

these two buses, this custom target architecture

(crcfast. adf) takes 7 cycles to implement a CRC

application. Moreover, from TCE tool, we took the

performances of some architecture to compare the

result of Tensilica configurations and found a

remarkable judgment from this assessment. So we

think by using this way it is possible to generate an

efficient, application-specific processor. This method

can be applicable many channel codes and source

codes.

참고문헌
[1] C. Hendrik, “Transport Triggered Architectures

Design and Evaluation,” Ph. D Dissertation,

Technical University of Delft Standford

University, Delft, Netherlands, 1995.

[2] P. Jaaskelainen, “From Parallel Programs to

Customized Parallel Processors,” Ph. D

Dissertation, Tampere University of Technology,

Tampere, Finland, 2012.

[3] P. Jaaskelainen, “Instruction Set Simulator for

Transport Triggered Architectures,” Master

Dissertation, Tampere University of Technology,

Tampere, Finland, 2005.

[4] Alam S. Shamsul, Choi GoangSeog, “Response

of Transport Triggered Architectures for

High-speed Processor Design,” IEICE Electronics

Express Vol. 10, No. 5, 2013, pp. 1-6.

[5] Metsahalme, “Instruction Scheduler Framework

for Transport Triggered Architectures,” Master

Dissertation, Tampere University of Technology,

Tampere, Finland, 2008.

[6] P. Jaaskelainen, V. Guzma, A. Cilio, and J.

Takala, “Codesign Toolset for Application-

Specific Instruction-Set Processors,” Proceedings

of the Conference on Multimedia on Mobile

Devices, SPIE, Nov 2007.

[7] Tensilica. com, ConnX D2 DSP Engine.

http://www.tensilica.com/uploads/pdf/connx_

d2_pb.pdf, 2012.

[8] Tensilica. com, ConnX D2 DSP Engine,

http://www.tensilica.com/uploads/pdf/HiFi_2

_product_brief.pdf, 2012.

[9] Tensilica Diamond Standard Controller Data

Book. http://www.tensilica.com/products/

diamonds#designtools, 2012.

[10] Tensilica. com, Xtensa 7 Product Brief.

http://www.tensilica.com/uploads/pdf/xtensa_

7.pdf, 2012.

[11] 하산타릭, 최광석, “효율적인 정도 생성기 및 새

로운 순열 기법을 가진 LT 코덱구조,” 디지털산업

정보학회 논문지, 제10권, 제4호, 2014, pp.

117-125.

[12] 무하마드 아심, 최광석, “무선채널에서 결합 분수

부호들의 성취율 평가,” 디지털산업정보학회 논

문지, 제8권, 제1호, 2012, pp. 147-155.

고급 언어에서 ASIP을 위한 전용 부호 생성 기술 연구

디지털산업정보학회 논문지 43

알람 삼술
(Alam S. Shamsul)

2013년 9월~현재
Khulna 대학교 전자통신공학과
조교수

2013년 8월 조선대학교 정보통신공학과
(공학석사)

2003년 2월 Khulna 대학교 전자통신공학과
(공학사)

관심분야 : 통신 VLSI, ASIC, ASIP 설계,
채널 부호

E-mail : alam_ece@yahoo.com

최 광 석
(Choi Goangseogg)

2006년 3월~현재
조선대학교 정보통신공학과 교수

2002년 2월 고려대학교 전자공학과(공학박사)
1989년 2월 부산대학교 전자공학과(공학석사)
1987년 2월 부산대학교 전자공학과(공학사)
관심분야 : 통신 및 디지털 미디어 SoC 설계
E-mail : gschoigs@chosun.ac.kr

논문접수일: 2015년 7월 16일
수　정　일: 2015년 8월 3일
게재확정일: 2015년 8월 21일

▪저자소개▪

