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Abstract 
Fuzzy Formal Concept Analysis (FCA) is a mathematical tool for the effective representation of imprecise and 
vague knowledge. However, with a large number of formal concepts from a fuzzy context, the task of 
knowledge representation becomes complex. Hence, knowledge reduction is an important issue in FCA with 
a fuzzy setting. The purpose of this current study is to address this issue by proposing a method that computes 
the corresponding crisp order for the fuzzy relation in a given fuzzy formal context. The obtained formal 
context using the proposed method provides a fewer number of concepts when compared to original fuzzy 
context. The resultant lattice structure is a reduced form of its corresponding fuzzy concept lattice and 
preserves the specialized and generalized concepts, as well as stability. This study also shows a step-by-step 
demonstration of the proposed method and its application. 
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1. Introduction 

In the early 1980s, Wille [1] proposed a mathematical model, called the Formal Concept Analysis 
(FCA), for conceptual data analysis and knowledge processing tasks. This theory is associated with a 
formal context (G, M, I) in which G represents a set of formal objects, M represents a set of formal 
attributes, and I is the binary relation between them. The main outputs of FCA are formal concepts, 
concept lattices, and implications from a given formal context [2]. A formal concept represents a set of 
objects, which are called the extent, and its common attributes, which are called the intent. All of which 
are closed with the Galois connection. The concept lattice represents a hierarchical order among the 
generated formal concepts in the form of specialization and generalization. FCA has been successfully 
applied for data mining, information retrieval, and knowledge discovery tasks in various fields, as 
discussed by Carpineto and Romano [3]. Burusco and Fuentes-Gonzalez [4] incorporated FCA with a 
fuzzy setting for handling uncertainty and imprecision. After that, several approaches were proposed 
for generating the fuzzy concept lattice [5]. FCA with a fuzzy setting has been successfully applied in 
different applications including mathematical searches, information retrieval, and association rule 
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mining [5-9]. In this process a major problem is the size of the concept lattice constructed from a large 
context. Hence, knowledge reduction is an important issue in FCA [2-19]. Knowledge reduction 
discusses reducing the size of the concept lattice, attributes (objects), and the number of formal 
concepts to avoid redundancy while maintaining the structure consistency. For this purpose, several 
approaches have been proposed, which we will discuss in Section 2 extensively. In this paper, we 
focused on computing the crisp order relation of a given fuzzy relation in the fuzzy formal context to 
encounter the issue [20-22]. The aim of this current study is to reduce the number of fuzzy formal 
concepts and its lattice structure. The proposed method provides a corresponding crisp formal context 
for a given fuzzy formal context in the following cases: 

 
Case (1)  Number of objects ( iO )   Number of attributes ( jA ). 

Case (2)  Number of objects ( iO ) = Number of attributes ( jA ). 

 
Our study also shows a step-by-step demonstration of the corresponding crisp order relation of the 

given fuzzy formal context. For the purpose of validation we have used the following metrics: (a) the 
availability of generalized and specialized concepts generated from the fuzzy formal context and its 
corresponding crisp order context, and (b) the stability of the obtained formal concepts using the 
proposed method. We applied the proposed method on a fuzzy data set discussed by Kandasamy and 
Smarandache [23].  

The rest of the paper is organized as follows: Section 2 provides a brief background about FCA in the 
fuzzy setting. In Section 3 we introduce the proposed method. In Section 4 we provide illustrations of 
the proposed method. Section 5 demonstrates an application of the proposed method. Section 6 
contains discussions, followed by a presentation of the conclusion, acknowledgements, and references. 

 
 

2. Formal Concept Analysis in the Fuzzy Setting 

A fuzzy formal context is a triplet K = (G, M, R


) where G is set of formal objects, M is a set of formal 

attributes, and R


 is a fuzzy relation between G and M [4,5]. The fuzzy relation ( , )R g m
  represents that 

the object gG has a membership value ( , )g m


 with the attributes mM. There are different 

possibilities for a formal context in FCA based on the type of objects, attributes, and the fuzzy relation.  
 
Table 1. Some possible conditions in a given fuzzy formal context 

Condition Object Attribute Fuzzy relation 
(a) Complete Complete Incomplete 
(b) Incomplete Complete Complete 
(c) Complete Incomplete Complete 
(d) Incomplete Incomplete Complete 
(e) Crisp Crisp Complete 
(f) Crisp Fuzzy Complete 
(g) Fuzzy Crisp Complete 
(h) Fuzzy Fuzzy Complete 
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Table 1 provides some possible conditions in a given fuzzy formal context. Very recently, a few 
investigations have been available in the FCA literature for an incomplete fuzzy relation, condition (a), 
as shown by in Table 1 [24-27].  

In this study we restricted our analysis to the possibilities of when the fuzzy relation is complete, (i.e., 
conditions (b)–(h)). The notions of the residuated lattice, fuzzy Galois connection, fuzzy closure 
property, and complete lattice are defined in brief below.  

 
A fuzzy set with a binary relation   on a set S


 is called the partial order relation iff [28]: 

• Reflexive: x x
  , x


 S


, 

• Anti symmetric: x y
   and y x


 x z


, x


, y
  S


, 

• Transitive: x y
 

 and y z

 x z

 , x
 ,

y
 , z

 
S


. 

A fuzzy lattice is a partially ordered set of ( S


, ≤), in which for every pair of ( x


, y


), there exists a Supremum 

= x

 y


 and an Infimum = x

 y


. The residuated lattice L = (L, , , , ,0,1)     is the finite structure of 

truth-values of the object and its properties. L is complete residuated lattice iff [5, 29-30]: 
(1) (L, , ,0,1)   is a complete lattice. 

(2) (L, ,1)  is commutative monoid. (i.e.,   is the commutative and associative means a1=1  

a=a,  aL). 
(3)   and   are the binary operations are called multiplication and residuum, respectively.  
The operators   and   are defined distinctly by Lukasiewicz, Gödel, and Goguen [7].   
Lukasiewicz: max( 1,0)a b a b    , min(1 ,1).a b a b      
Godel: min( ,  )a b a b   1 if a b a b   otherwise b. 
Goguen: .a b a b  , 1 if a b a b   otherwise b/a . 
For any L-set of O  LG objects and L- set of A  LM attributes, we can define an L-set of O   LG 

attributes and an L-set of A   LM objects, respectively, as follows [29,30]: 
 
• ( ) ( ( ) ( , ))g GO m O g R g m

  


 

• ( ) ( ( ) ( , ))m MA g A m R g m
  


 

 
The ( )O m is the truth degree of the attribute m is covered by all objects from g and ( )A g  is the 

truth degree of object g that has all the attributes from m. The fuzzy formal concept is a pair of (O, A)  
LG   LM, such that O = A and A  =O, where the fuzzy set of objects O are called the extent and the 
fuzzy set of attributes A that are called intents. The operator ( , )   is known as a fuzzy Galois 
connection for extensive study readers can refer to [24,25,29-35].  When the operator () is applied to a 
set of objects, it provides a set of attributes that are covered by these objects. Consequently, when the 
operator () is applied to these covered attributes, we can find the additional objects that may cover 
these attributes. Hence, the fuzzy formal concept is a maximal rectangle of a given fuzzy formal context 
K filled with a membership value between [0, 1], which is an ordered pair of two sets (O, A), where O
G is called the extent, and A M is called the intent iff they form the fuzzy closure property, which 
is as defined below. 
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Two fuzzy closure operators can be defined as,   ( ): LG→LG and   ( ): LM→ LM,  1O , 2O , 

OLG and 1A , 2A , ALM satisfy following properties [31,35]: 

 
• 1O   2O    ( 1O )   ( 2O ) and 1A  2A   ( 1A  )   ( 2A ) 

• O    ( O) and A    ( A), 

•   (  ( O))=   ( O ) and   (  (A )) =   (A) 
 
Through these closure properties one can neither enlarge the attributes nor the objects of a fuzzy 

formal concept. The set of fuzzy formal concepts KFC  follows the super and sub hierarchy properties 

2 2( , )O A ≤ 1 1( , )O A :   2O  1O  (  2A  1A ) in the lattice structure 
KFCL = ( KFC ,  ). Together with 

this ordering, in the complete lattice an infimum (0, 0, …, 0) and a supremum (1,1,…,1) exist for some 
formal concepts [30,31]:  

 
• ( , ) ( , ( ) )j J j j j J j j J jO A O A 

       

●     ( , ) (( ) , )j J j j j J j j J jO A O A
     

 
 

Table 2. Summary of some important references on the knowledge reduction issue 
FCA in crisp and 

fuzzy settings 
FCA through 
granular and 

threshold 

Decompositio
n methods in 

FCA 

Approximation 
methods in FCA 
and its extension

Reduction 
methods in FCA

Extensive study of 
fuzzy FCA 

Carpineto and  
Romano [3] 

Hu et al. [14] Gely [12] Nguyen et al. [9] Ganter and 
Wille [2] 

Ayouni et al. [6] 

Burusco and  
Gonzalez [4] 

Prem Kumar and 
Aswani Kumar [18] 

Guo et al. [13] Hu et al. [14] Carpineto and 
Romano [3] 

Maio et al. [8] 

Belohlavek and 
Vychodil [5] 

Belohlavek [29,30] Hu et al. [14] Djouadi [24] Ghosh et al. [7] Kandasamy and 
Smarandache [23] 

Aswani Kumar 
[10,11,45,46,53,54] 

Zhang et al. [32] Li and Zhang 
[16] 

Dubois and 
Prade [25] 

Aswani Kumar 
and Srinivas [10] 

Djouadi [24], 
Dubois and Prade 

[25] 
Beg and Ashraf 

[20] 
Cross and 

Kandasamy [36] 
Prem Kumar 
and Aswani 
Kumar [19] 

Krupka and 
Lastovica [26] 

Konecny and 
Krupka [15] 

Prem Kumar and 
Aswani Kumar 

[51,52] 
Lee [21],  

Zadeh [22] 
Wu et al. [39] Beg and 

Ashraf [20] 
Li et al. [27,] Li and Zhang 

[16] 
Belohlavek and 
Konecny [33] 

Kuznetsov and 
Obiedkov [37,40] 

Kang et al. [38] Dubois and 
Prade [25] 

Pocs [31] Li et al. [17,48,49] Medina [34] 

Yang et al. [51] Liu et al. [43] Horvath et al. 
[42] 

Shao et al. [35], 
Skowron et al. [44] 

Bartl et al. [41] Skowron et al. [44] 

 
For detailed illustrations about generating the formal concepts from a given formal context, readers 

can refer to references including [1-8,13,16,24-27,29-40]. Reducing the number of formal concepts and 
the size of the lattice structure are open issues for researchers as knowledge reduction problems. Table 2 
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summarizes the approaches that are available to handle these issues. Our proposed method computes 
the corresponding crisp order for the fuzzy relation in the given fuzzy formal context for reducing the 
number of fuzzy formal concepts and the size of the lattice structure from a fuzzy context. 

 
 

3. Proposed Method 

In this section, we propose a method for computing the crisp order relation for the fuzzy relation of a 
fuzzy context for the two cases mentioned in Section 1.   

If ijR


 is a fuzzy relation, then it can be transformed into a corresponding crisp relation '
ijR  as 

defined below: 

Step 1. If ( , ) ( , )R Rx y y x   , then ' '( , ) 1, ( , ) 0
R R

x y y x   .  
Step 2. If ( , ) ( , )R Rx y y x   , then ' '( , ) ( , )

R R
x y y x   where  

' ( , )
R

x y =1 if ( , ) 1R x y   otherwise 0. 

Step 3. For other conditions '
ijR


 = 1 if  ijR 


otherwise 0.  

The pair (x, y) is considered as the object and attribute, respectively, in the fuzzy formal context. 
These pairs can be visualized as a hierarchical order in the concept lattice so that they can be compared 
or ordered. In the proposed method, some possibilities for a given fuzzy formal context are also 
considered as described below: 

Case 1. Number of objects ( iO )   Number of attributes ( jA ). 

Step 1. If ( , ) ( , )R i j R j iO A O A   then ' '( , ) 1, ( , ) 0i j j iR R
O A O A   .  

  Similarly when ( , ) ( , )R i j R j iO A O A   then ' '( , ) 0, ( , ) 1i j j iR R
O A O A   . 

Step 2. If ( , ) ( , )R i j R j iO A O A   then ' '( , ) ( , )i j j iR R
O A O A   

where ,
 ' ( , )i jR

O A =1,  If  ( , ) 1 otherwise 0.R i jO A   

Step 3. If ( , ) 0R i iO A   then ' ( , ) 1i iR
O A  . In other conditions if, ( , ) 0R i jO A   then ' ( , ) 1i jR

O A  . 

 
Case 2. Number of objects ( iO ) = Number of attributes ( jA ). 

Step 1. If ( , ) ( , )R i j R j iO A O A   then ' '( , ) 1, ( , ) 0i j j iR R
O A O A   .  

Similarly, when ' '( , ) 1, ( , ) 0i j j iR R
O A O A    then ' '( , ) 0, ( , ) 1i j j iR R

O A O A   . 

Step 2. If ( , ) ( , )R i j R j iO A O A  then ' '( , ) ( , ) i j j iR R
O A O A    

where ,
 ' '( , ) ( , ) i j j iR R

O A O A  = If  ( , ) 1 then 1 otherwise 0.R i jO A   

Step 3. In other conditions: if ( , ) 0R i iO A   then ' ( , ) 1i iR
O A  . 

 
We can observe that the proposed method computes the corresponding crisp order relation of the 

given fuzzy relation between the objects and the attributes. The maximum number of fuzzy relations in 
any given fuzzy formal context cannot exceed (|G|   |M|). Hence, the proposed method takes the 
maximum 2 (|G| |M|) complexity for computing the crisp order relation. The complexity for 
building the crisp concept lattice is usually O (|G|+|M|).|M|.|L|), as discussed by Kuznetsov and 
Obiedkov [37]. The overall complexity of the proposed method to compute the crisp order context and 
to construct its lattice structure is O (|G| |M| + (|G|+|M|).|M|.|L|)). 
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4. Illustrations 

4.1 Illustration of the Proposed Method 
 
To illustrate the proposed method we have considered two fuzzy formal contexts, which are shown in 

Tables 3 and 5. Table 3 represents a fuzzy formal context in which the number of objects ( iO )  
number of attributes ( jA ) (Case 1) [8]. Table 4 represents the corresponding crisp context of Table 3 

using the proposed method. Table 5 represents a fuzzy formal context in which the number of objects 
( iO ) = number of attributes ( jA ) (Case 2) [7]. Table 6 represents the corresponding crisp context of 

Table 5 using the proposed method. 
Case 1 illustration of the proposed method:  
The fuzzy formal concepts generated from the fuzzy context shown in Table 3 are: 
 

Table 3. A fuzzy context in which the number of objects the number of attributes 
 1A  2A 3A 4A  

1O  0.61 0.89 0.00 0.00 

2O  0.94 0.00 0.71 1.00 

3O  1.00 0.00 0.00 0.76 

4O  0.70 0.00 0.97 0.00 

5O  0.78 0.64 1.00 1.00 

 
 
 
 
 
 
 
 
 
 
Fig. 1.  Fuzzy concept lattice for the context shown in Table 3. 

 
1. 5 1 2 3 4{{0.64 / },{1.0 / 1.0 / 1.0 / 1.0 / }}O A A A A    
2. 2 5 1 3 4{{0.71/ 0.78/ },{1.0 / 1.0 / 1.0 / }}O O A A A    
3. 2 3 5 1 4{{0.94 / 0.76 / 0.78 / },{1.0 / 1.0 / }}O O O A A             
4. 2 4 5 1 3{{0.71/ 0.70/ 0.78/ },{1.0 / 1.0 / }}O O O A A    
5. 1 5 1 2{{0.61/ 0.64 / },{1.0 / 1.0 / }}O O A A       
6. 1 2 3 4 5 1{{0.61/ 0.94 / 1.00 / 0.70 / 0.78 / },{1.0 / }}O O O O O A     
The line diagram of concepts generated from the fuzzy context of Table 3 is shown in Fig. 1 [8].  
From the fuzzy concept lattice shown in Fig. 1 we can conclude that: 

• 1A  is a generalized attribute, which covers the maximal objects of the fuzzy formal context, as 
shown in Table 3, 

• 5O  is a specialized object, which covers the maximal attributes of the fuzzy formal context, as 
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shown in Table 3. 
The computed crisp order relations for the fuzzy relation shown in Table 3 (using the proposed 

method) are: 
1. 1 1( , ) 0R O A  . Hence, ' 1 1( , ) 1

R
O A  . 

2. 1 2 2 1( , ) ( , )R RO A O A  . Hence, ' '1 2 2 1( , ) 0, ( , ) 1
R R

O A O A   . 

3. 1 3 3 1( , ) ( , )R RO A O A  . Hence, ' '1 3 3 1( , ) 0, ( , ) 1
R R

O A O A   . 

4. 1 4 4 1( , ) ( , )R RO A O A  . Hence, ' '1 4 4 1( , ) 0, ( , ) 1
R R

O A O A   . 

5. 2 2( , ) 0R O A  . Hence, ' 2 2( , ) 0
R

O A  . 
6. 2 3 3 2( , ) ( , )R RO A O A  . Hence, ' '2 3 3 2( , ) 1, ( , ) 0

R R
O A O A   . 

7. 2 4 4 2( , ) ( , )R RO A O A  . Hence, ' '2 4 4 2( , ) 1, ( , ) 0
R R

O A O A   . 
8. 3 3( , ) 0R O A  . Hence, ' 3 3( , ) 0

R
O A  . 

9. 3 4 4 3( , ) ( , )R RO A O A  . Hence, 
' '3 4 4 3( , ) 0, ( , ) 1

R R
O A O A   . 

10. 4 4( , ) 0R O A  . Hence, ' 4 4( , ) 0
R

O A  . 

11. 5 1( , ) 0R O A  . Hence, ' 5 1( , ) 1
R

O A  .  

Similarly, ' ' '5 2 5 3 5 4( , ) 1, ( , ) 1, ( , ) 1
R R R

O A O A O A     . 
 

 

Fig. 2.  Concept lattice for the context shown in Table 4. 
 
The computed crisp order relations for the fuzzy relation shown in Table 3 are tabulated as the crisp 

context in Table 4.  
 

Table 4. Crisp order for the fuzzy context of Table 3 
 1A 2A  3A 4A  

1O  1 0 0 0 

2O  1 0 1 1 

3O  1 0 0 0 

4O  1 0 1 0 

5O  1 1 1 1 
 
The formal concepts generated from the context shown in Table 4 are: 
1. 5 1 2 3 4{{ },{ , , , }}O A A A A , 
2. 2 5 1 3 4{{ , },{ , , }}O O A A A , 
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3. 2 4 5 1 3{{ , , },{ , }}O O O A A ,    
4. 1 2 3 4 5 1{{ , , , , },{ }}O O O O O A . 
 
The line diagram of concepts generated from the formal context of Table 4 is shown in Fig. 2, from 

which we can conclude that: 

• 1A  is a generalized attribute, which covers the maximal objects of the formal context, as shown in 
Table 4, 

• 5O  is a specialized object, which covers the maximal attributes of the formal context, as shown in 
Table 4. 

We can observe that the fuzzy concept lattice shown in Fig. 1 and its corresponding crisp lattice 
shown in Fig. 2 have the same specialized and generalized concepts. We can also observe that the crisp 
lattice structure (Fig. 2) contains a fewer number of concepts when compared to the corresponding 
fuzzy concept lattice (Fig. 1). 

 
Table 5. A fuzzy formal context in which number of objects=number of attributes 

 1A  2A  3A  4A  5A  6A  

1O  0 1 0.5 0.5 1 0 

2O  1 1 1 0 0 0 

3O  0.5 0.5 0 0 0 1 

4O  0 0 0 1 0.5 0 

5O  0 0 1 0.5 0 0 

6O  0.5 0 0 0 0 0 
 
Case 2 illustration of the proposed method:  
The fuzzy formal concepts obtained from the fuzzy context shown in Table 5 are: 
1. {{ }, { 1 2 3 4 5 61.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 /A A A A A A     }} 

2. {{ 10.5 / O }, { 2 3 4 51.0/ 1.0 / 1.0 / 1.0 /A A A A   }} 

3. {{ 2O }, { 1 2 31.0 / 1.0 / 1.0 /A A A  }} 

4. {{0.5/ 3O }, { 1 2 61./ 0 / 1.0 / 1.0 /A A A  }}  
5. {{ 10.5 / O + 50.5/O }, { 3 41.0/ 1.0/A A }} 

6. {{ 1 40.5/ 0.5/O O }, { 4 51.0 / 1.0 /A A }}  

7. {{ 1O }, { 2 3 4 51.0 / 0.5 / 0.5 / 1.0 /A A A A   }}  

8. {{ 1 20.5/ 1.0 /O O }, { 2 31.0 / 1.0 /A A }} 

9. {{ 2 31.0/ 0.5/O O }, { 1 21.0 / 1.0 /A A }}  

10. {{ 3O }, { 1 2 60.5 / 0.5 / 1.0 /A A A  }} 

11. { 1 50.5/ 1.0 /O O }, { 3 41.0 / 0.5 /A A }}  

12. {{ 1 40.5/ 1.0 /O O }, { 4 51.0 / 0.5/A A }} 
13. {{ 1 41.0 / 0.5/O O }, { 4 50.5/ 1.0 /A A }}  

14. {{ 1 51.0/ 1.0/O O }, { 3 40.5/ 0.5/A A }}  

15. {{ 1 2 50.5/ 1.0 / 1.0 /O O O  }, { 31.0 / A }}  
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16. {{ 1 21.0/ 1.0/O O }, { 2 31.0 / 0.5 /A A }}  

17. {{ 2 3 61.0 / 0.5/ 0.5/O O O  }, { 11.0/ A }}  

18. {{ 2 31.0 / 1.0 /O O }, { 1 20.5/ 0.5/A A }} 

19. {{ 1 4 50.5 / 1.0 / 0.5 /O O O  }, { 41.0 / A }}  

20. {{ 1 41.0 / 1.0/O O }, { 4 50.5/ 0.5 /A A }} 

21. {{ 1 2 51.0 / 1.0 / 1.0 /O O O  }, { 30.5/ A }}  

22. {{ 1 2 31.0 / 1.0 / 0.5/O O O  }, { 21.0 / A }}  

23. {{ 1 4 51.0 / 1.0 / 1.0 /O O O  }, { 40.5 / A }}  

24. {{ 1 2 31.0 / 1.0 / 1.0 /O O O  }, { 20.5 / A }}  

25. {{ 2 3 61.0/ 1.0 / 1.0 /O O O  }, { 10.5 / A }}  

26. 1 2 3 4 5 6{{1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / }, }O O O O O O       
Where  represents a null set.  
The line diagram (fuzzy concept lattice) of these fuzzy concepts is shown in Fig. 3, from which we can 

conclude that: 

• The specialized concepts in Fig. 3 are 2, 3, and 4. Hence, objects 1O , 2O , and 3O  cover the maximal 
attributes of the fuzzy formal context, as shown in Table 5.   

• The generalized concepts are 21, 23, 24, and 25. Hence, attributes 1A , 2A , 3A and 4A cover the 
maximal objects of the fuzzy formal context, as shown in Table 5. 

The corresponding crisp order relations for fuzzy relations that are shown in Table 5 are:  
1. 1 1( , ) 0R O A  . Hence, ' 1 1( , ) 0

R
O A  . 

2. 1 2 2 1( , ) ( , ) 1.R RO A O A    Hence, ' '1 2 2 1( , ) ( , ) 1
R R

O A O A   . 

3. 1 3 3 1( , ) ( , )R RO A O A  . Hence, ' '1 3 3 1( , ) 0, ( , ) 0
R R

O A O A   . 

4. 1 4 4 1( , ) ( , )R RO A O A  . Hence, ' '1 4 4 1( , ) 1, ( , ) 0
R R

O A O A   . 

5. 1 5 5 1( , ) ( , )R RO A O A  . Hence, ' '1 5 5 1( , ) 1, ( , ) 0
R R

O A O A   . 

6. 1 6 6 1( , ) ( , )R RO A O A  . Hence, ' '1 6 6 1( , ) 0, ( , ) 1
R R

O A O A   . 

7. 2 2( , ) 0R O A  . Hence, ' 2 2( , ) 1
R

O A  . 

8. 2 3 3 2( , ) ( , )R RO A O A  . Hence, ' '2 3 3 2( , ) 1, ( , ) 0
R R

O A O A   . 

9. 2 4 4 2( , ) ( , )R RO A O A  . Hence, ' '2 4 4 2( , ) 0, ( , ) 0
R R

O A O A   . 

10. 2 5 5 2( , ) ( , )R RO A O A  . Hence, ' '2 5 5 2( , ) 0, ( , ) 0
R R

O A O A   . 

11. 2 6 6 2( , ) ( , )R RO A O A  . Hence, ' '2 6 6 2( , ) 0, ( , ) 0
R R

O A O A   . 

12. 3 3( , ) 0R O A  . Hence, ' 3 3( , ) 0
R

O A  . 

13. 3 4 4 3( , ) ( , )R RO A O A  . Hence, ' '3 4 4 3( , ) 0, ( , ) 0
R R

O A O A   . 

14. 3 5 5 3( , ) ( , )R RO A O A  . Hence, ' '3 5 5 3( , ) 0, ( , ) 1
R R

O A O A   . 

15. 3 6 6 3( , ) ( , )R RO A O A  . Hence, ' '3 6 6 3( , ) 1, ( , ) 0
R R

O A O A   . 

16. 4 4( , ) 1R O A  . Hence, ' 4 4( , ) 1
R

O A  . 
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Table 6. Crisp order of the fuzzy context shown in Table 5 
 1A  2A  3A  4A  5A  6A  

1O  0 1 0 1 1 0 

2O  1 1 1 0 0 0 

3O  0 0 0 0 0 1 

4O  0 0 0 1 0 0 

5O  0 0 1 0 0 0 

6O  1 0 0 0 0 0 

 
17. 4 5 5 4( , ) ( , )R RO A O A  . Hence, ' '4 5 5 4( , ) 0, ( , ) 0

R R
O A O A   . 

18. 4 6 6 4( , ) ( , )R RO A O A  . Hence, ' '4 6 6 4( , ) ( , ) 0
R R

O A O A   . 

19. 5 5( , ) 0R O A  . Hence, ' 5 5( , ) 0
R

O A  . 

20. 5 6 6 5( , ) ( , )R RO A O A  . Hence, ' '5 6 6 5( , ) ( , ) 0
R R

O A O A   . 

21. 6 6( , ) 0R O A  . Hence, ' 6 6( , ) 0
R

O A  . 

 
These relations are shown in Table 6, which represents the corresponding crisp order formal context 

of Table 5.  
The formal concepts generated from the context shown in Table 6 are: 
1. 1 2 3 4 5 6{{ },{ , , , , , }}A A A A A A   
2. 3 6{{ },{ }}O A   
3. 1 2 4 5{{ },{ , , }}O A A A  
4. 2 1 2 3{{ },{ , , }}O A A A   

5. 1 4 4{{ , },{ }}O O A   
6. 1 2 2{{ , },{ }}O O A  
7. 2 5 3{{ , },{ }}O O A                                      
8. 2 6 1{{ , },{ }}O O A   
9. 1 2 3 4 5{{ , , , , },{ }}O O O O O  . 
The line diagram of the formal concepts generated from the context of Table 6 is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Fuzzy concept lattice for the context shown in Table 5. 
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From Fig. 4, we can find that: 

• The specialized concepts are 2, 3, and 4. Hence, objects 1O , 2O , and 3O  cover the maximal 
attributes of formal context, as shown in Table 6.  

• The generalized concepts are 5, 6, 7 and 8. Hence, the attributes 1A , 2A , 3A and 4A  cover the 
maximal objects of formal context, as shown in Table 6.    

We can observe that the fuzzy concept lattice shown in Fig. 3 and its corresponding crisp lattice 
shown in Fig. 4 have the same specialized and generalized concepts. We can also observe that the crisp 
lattice structure contains a fewer number of concepts when compared to its corresponding fuzzy 
concept lattice. To analyze the importance of the obtained concepts, we used the metric stability in the 
next section. 

 

 
Fig. 4. Concept lattice for the context shown in Table 6. 

 
4.2 Stability of the Obtained Formal Concepts Using the Proposed Method: 

 
The notion of the stability of formal concepts was introduced by Kuznetsov [40]. Let K = (G, M, R ) 

be a formal context and (O, A) be a formal concept of K. Then the stability index  of (O, A) is defined 
as follows: 

 
( , ) |{ | } | / 2oO A C O C B    , 

 
This metric measures the dependency of the intent of formal concepts on the particular objects of its 

extent. This helps us when the given formal context changes or when some of the objects disappear. The 
stability indicates how likely it is for a concept to remain in the concept lattice. Stability can also be used 
to construct a stabilized lattice for a given threshold. 

In this paper we have used this metric for formal concepts generated from the crisp context (shown in 
Tables 4 and 6) that was obtained using the proposed method. 

The stability of formal concepts generated from Table 4 can be computed as follows: 
1. 5 1 2 3 4{{ },{ , , , }}O A A A A  

        (a) 5 1 2 3 4{ , , , }O A A A A  , 

        (b) 1 2 3 4{ , , , }A A A A  by default. 
    Hence, the stability of this concept is 2/2=1. 

2. 2 5 1 3 4{{ , },{ , , }}O O A A A  
        (a) 2 1 3 4{ , , }O A A A        
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        (b) 5 1 2 3 4{ , , , }O A A A A                    

        (c) 2 5 1 3 4{ , } { , , }O O A A A     

        (d) 1 3 4{ , , }A A A   by default. 
    Hence, the stability of this concept is 3/22=3/4=0.75.           
3. 2 4 5 1 3{{ , , },{ , }}O O O A A             

        (a) 2 1 3 4{ , , }O A A A        

        (b) 4 1 3{ , }O A A   

        (c) 5 1 2 3 4{ , , , }O A A A A        

        (d) 2 4 1 3{ , } { , }O O A A           

        (e) 2 5 1 3 4{ , } { , , }O O A A A     

        (f) 4 5 1 3{ , } { , }O O A A 
 

        (g) 2 4 5 1 3{ , , } { , }O O O A A 
 

          (h) 1 3{ , }A A   by default.    
4. Similarly, the stability of 1 2 3 4 5 1{{ , , , , },{ }}O O O O O A  is 25/32=0.7. 
 
Similarly, the stability of formal concepts generated from Table 6 can be computed as follows: 

1. 1 2 3 4 5 6{{ },{ , , , , , }}A A A A A A           

       (a) 1 2 3 4 5 6{ , , , , , }A A A A A A  . 
Hence, the stability of this concept is 1/1=1.        
2. 3 6{{ },{ }}O A           

       (a) 3 6{ }O A   

       (b) 1 2 3 4 5 6{ , , , , , }A A A A A A  . 
Hence, the stability of this concept is 1/2=0.5.    

3. 1 2 4 5{{ },{ , , }}O A A A
 

      (a)  1 2 4 5, ,O A A A   

(b) 1 2 3 4 5 6{ , , , , , }A A A A A A  .   
Hence the stability of this concept is 1/2=0.5.    
4. 2 1 2 3{{ },{ , , }}O A A A   

     (a) 2 1 2 3, ,O A A A   

(b) 1 2 3 4 5 6{ , , , , , }A A A A A A  . Hence, the stability of this concept is 1/2=0.5.      
5. 1 4 4{{ , },{ }}O O A              

      (a) 1 2 4 5, ,O A A A  , 

      (b) 4 4O A  , 

      (c) 1 4 4{ , }O O A   

      (d) 1 2 3 4 5 6{ , , , , , }A A A A A A  . Hence, the stability of this concept is 2/22=1/2=0.5.   
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6. 1 2 2{{ , },{ }}O O A
 

      (a) 1 2 4 5, ,O A A A  , 

      (b) 2 2O A  , 

      (b) 1 2 2{ , }O O A   

      (d) 1 2 3 4 5 6{ , , , , , }A A A A A A  . Hence, the stability of this concept is 2/22=1/2=0.5.   

7. 2 5 3{{ , },{ }}O O A
         

      (a) 2 1 2 3, ,O A A A 
, 

      (b) 5 3O A 
, 

      (c) 2 5 3{ , }O O A   

      (d) 1 2 3 4 5 6{ , , , , , }A A A A A A  . Hence, the stability of this concept is 2/22=1/2=0.5.   
8. 2 6 1{{ , },{ }}O O A

 

      (a) 2 1 2 3, ,O A A A  , 

      (b) 6 1O A 
, 

      (c) 2 6 1{ , }O O A   

      (d) 1 2 3 4 5 6{ , , , , , }A A A A A A  . Hence, the stability of this concept is 2/22=1/2=0.5.                

9. Similarly, the stability of the formal concept 1 2 3 4 5{{ , , , , },{ }}O O O O O   is 0.75. 
We can observe that the proposed method provides stable formal concepts at the threshold of 0.5. In 

the next section we provide an application for the proposed method. 
 

Table 7. Fuzzy context by the headmaster 
 1A  2A  3A  

1O  
0.8 0.0 0.0 

2O  
0.0 0.4 0.4 

3O  
0.0 0.0 0.3 

4O  
0.7 0.0 0.0 

5O  
0.0 0.3 0.5 

 
 

5. Application of the Proposed Method  

We have applied the proposed method on the fuzzy data set shown in Tables 7–9. These data sets 
were collected from headmasters, retired teachers, and educators, respectively, by Kandasamy and 
Smarandache [23] and contain 5-objects and 3-attributes. They are described as follows: 

 

1O = Teaching is good, 

2O = Teaching is poor, 
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3O = Teaching is mediocre, 

4O = Teacher is kind (molds the character of students in the right way), 

5O = Teacher is harsh. 
The attributes are: 

1A =Good student, 

2A =Bad student, 

3A =Average student. 
 
From Table 7, Kandasamy and Smarandache [23] have concluded that: 

• A harsh teacher cannot produce a good student, 

• A harsh teacher can produce only average and bad students. 
 

Table 8. Fuzzy context by retired teacher 
 1A  2A  3A  

1O   0.6 0.0 0.5 

2O   0.0 0.5 0.5 

3O   0.6 0.5 0.6 

4O   0.6 0.0 0.4 

5O   0.0 0.6 0.8 

 
From Table 8 Kandasamy and Smarandache [23] have concluded that: 

• A harsh teacher cannot produce good student but have equal degree to produce bad and average 
students. 

 
Table 9. Fuzzy context by retired educationalist 

 1A 2A 3A  

1O  0.7 0.3 0.6 

2O  0.0 0.5 0.3 

3O  0.3 0.5 0.5 

4O  0.8 0.5 0.6 

5O  0.0 0.5 0.6 
 
From Table 9, Kandasamy and Smarandache [23] have concluded that: 

• A harsh teacher cannot produce good students. He/She can produce average students, but has a 
chance to produce bad students as well. 

 
The final conclusions of Kandasamy and Smarandache [23] from these 3 experts are: 

• A harsh teacher, due to his/her rudeness and harshness, always frightens the students. Due to this 
fact, he/she is certain to produce average students and also has the possibility of producing bad 
students.  

• A harsh teacher cannot produce good students. 
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Table 10. Crisp order of the fuzzy context shown in Table 7 
 1A  2A  3A  

1O  1 0 0 

2O  0 1 1 

3O  0 0 1 

4O  1 0 0 

5O  0 1 1 

 
 
 
 
 
 
 
 
 

Fig. 5.  Concept lattice for the context shown in Table 10. 
 
We analyzed the fuzzy contexts shown in Tables 7–9 using the proposed method. The computed crisp 

contexts for these fuzzy contexts are shown in Tables 10–12, respectively.  
The formal concepts generated from the context shown in Table 10 are:  
1. 1 2 3{{ },{ , , }}A A A                                       

2. 2 5 2 3{{ , },{ , }}O O A A  
3. 1 4 1{{ , },{ }}O O A                                          
4. 2 3 5 3{{ , , },{ }}O O O A                        

5. 1 2 3 4 5{{ , , , , },{ }}O O O O O   
The lattice constructed from the formal concepts above is shown in Fig. 5 using the ConExp tool [47]. 

It shows the following information:  

• The specialized concepts are 2 5 2 3{{ , },{ , }}O O A A and 1 4 1{{ , },{ }}O O A .  

• From the concept 2 5 2 3{{ , },{ , }}O O A A , we can conclude that, if the teaching is poor and the teacher 
is harsh, then the teacher can produce bad and average students. A harsh teacher cannot produce 
good students because there is no formal concept that contains object 5 and attribute 1.  

• From the concept 1 4 1{{ , },{ }}O O A , we can conclude that, if the teaching is good and the teacher is 
kind, then the teacher can produce good students. 

 
Table 11. Crisp order of the fuzzy context shown in Table 8 

 1A  2A  3A  

1O  1 0 0 

2O  0 1 0 

3O  1 0 1 

4O  1 0 1 

5O  0 1 1 



Prem Kumar Singh and Ch. Aswani Kumar 
 

 

J Inf Process Syst, Vol.11, No.2, pp.184~204, June 2015 | 199 

 
 
 
 
 
 

 
Fig. 6.  Concept lattice for the context shown in Table 11. 

 
The formal concepts generated from the context shown in Table 11 are: 
1. 1 2 3{{ },{ , , }}A A A , 
2. 5 2 3{{ },{ , }}O A A  , 
3. 3 4 5 3{{ , , },{ }}O O O A   

4. 3 4 1 3{{ , },{ , }}O O A A  
5. 2 5 2{{ , },{ }}O O A   

6. 1 3 4 1{{ , , },{ }}O O O A  

7. 1 2 3 4 5{{ , , , , },{ }}O O O O O   
 
The lattice constructed using the above formal concepts is shown in Fig. 6 and shows the following 

information: 

• The specialized concepts are 5 2 3{{ },{ , }}O A A and 3 4 1 3{{ , },{ , }}O O A A .  

• From the concept 5 2 3{{ },{ , }}O A A , we can conclude that, if the teacher is harsh, then the teacher 
can produce bad and average students. A harsh teacher cannot produce good students, because 
there is no formal concept that contains object 5 and attribute 1.  

• From the concept 3 4 1 3{{ , },{ , }}O O A A , we can conclude that, if the teacher is mediocre and kind, 
then the teacher can produce good and average students. 

 
Table 12. Crisp order of the fuzzy context shown in Table 9 

 1A  2A  3A  

1O  1 1 1 

2O  0 1 0 

3O  0 1 1 

4O  1 1 1 

5O  0 1 1 
 

 
 
 
 
 
 
  
Fig. 7. Concept lattice for the context shown in Table 12. 
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The formal concepts generated from the context shown in Table 12 are:      
1. 1 4 1 2 3{{ , },{ , , }}O O A A A  
2. 3 5 2 3{{ , },{ , }}O O A A                 
3. 1 2 3 4 5 2{{ , , , , },{ }}O O O O O A     
The lattice obtained from the above formal concepts is shown in Fig. 7 [47]. From the concept 

3 5 2 3{{ , },{ , }}O O A A , we can conclude that, if a teacher is mediocre and harsh then the teacher can 
produce bad and average students. He/she cannot produce a good student, because there is no formal 
concept that contains object 5 and attribute 1. 

From the lattice structures shown in Figs. 5–7 we can conclude that: 
(a) A harsh teacher cannot produce good students. 
(b) A harsh teacher can produce only average and bad students. 
(c) If the teaching is good and the teacher is kind then he/she can produce good students. 
These conclusions are similar to those obtained by Kandasamy and Smarandache [23].  
 
 

6. Discussions 

In this paper our aim is to reduce the number of formal concepts and the size of the lattice structure 
that results from a fuzzy context. Recently, some methods have been investigated [13,20,26,38,39,41-
44]. Kang et al. [38] have discussed the  -fuzzy concept lattice and the  -rule for different 
granulations. Bartl et al. [41] have presented the generalization of a fuzzy relational system into a crisp 
relation using a composition operation by inserting hedges and its interpretation in FCA with a fuzzy 
setting. Horvath et al. [42] have discussed the cut of a fuzzy relation and its application in FCA with a 
fuzzy setting. Skowron et al. [44] have extensively studied granular computing. Kang et al. [38] 
discussed the crisp context at a different granulation-  using the transitive closure of the given fuzzy 
formal context. The transitivity closure of a fuzzy formal context can be computed when the number of 
objects = number of attributes in a given fuzzy formal context (for the Case 2 of Section 3). We can 
observe that each of the available approaches focused on computing the crisp context at granulation 
using a transitive closure or composition, which takes approximately O (|G|3) or O (|M|3) complexity 
(based on the algorithm). The proposed method is different from all of the above approaches in the 
following aspects:  
     (1) The proposed method computes the corresponding crisp context based on the reflexivity,    

symmetry, and transitivity properties; and  
     (2) The proposed method provides the crisp context in both of the conditions when the number of        

objects = number of attributes or the number of objects number of attributes and takes O (|G|
 |M|) complexity. Furthermore, the proposed method preserves the generalization, 
specialization, and stability of concepts at some threshold, which increases the importance and 
applicability of obtained concepts. 

We can observe that the proposed method provides a crisp order formal context of a given fuzzy 
context for both of the cases that have been mentioned. In this process, we have not focused on the 
uniqueness of an obtained crisp context. The concept lattice constructed from the obtained crisp 
context (using the proposed method) contains a fewer number of concepts while preserving the 
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generalized and specialized concepts, as well as stability, at some threshold. This increases the 
applicability of the proposed method, while considering the relevant details of the underlying 
knowledge. Finding the fuzzy attribute implications is another problem in a given fuzzy formal context. 
Our proposed method provides its crisp order from which we can easily find some of the attribute 
implications for further analysis using the ConExp Tool [47]. This observation has a significant role in 
analyzing the human reasoning of relational informational systems [1-3,20-23,38,42]. Also, the 
proposed method can be applied in various fields like knowledge discovery and representation [1-3,14, 
39,41,42-45,53,54]; information retrieval [2,3,24,45,54]; knowledge reduction [7,10,12,15,17-19,25, 
29,31,32,35,39,40,48,51,52]; and association rule mining [1-3,6,16,46,49,50]. 

 
 

7. Conclusion 

In this paper we aimed at providing a method for knowledge reduction in a fuzzy formal context by 
introducing a crisp order relation. The proposed method reduces the number of concepts and the size 
of the lattice structure obtained from a fuzzy context. We have also shown the step-by-step illustrations 
of the proposed method.   

The outline of the study is as follows: 

• The proposed method computes the crisp order relation for the given fuzzy relation using the  
properties of reflexivity, symmetry, and transitivity.  

• The corresponding crisp order relation provides a fewer number of concepts that have been  
obtained from a fuzzy context and further reduces the size of the lattice structure. 

• While reducing the number of concepts, the proposed method preserves the specialized and 
generalized concepts and their stability with some thresholds. 
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