Journal of Korean Institute of Intelligent Systems ISSN(Print) 19769172
Val, 25, No. 5, October 2015, pp. 515521 ISSN(Online) ~ 2288-2324
http://dx.doi.org/10.5391/JKIIS.2015,25.5.515

JKIIS

SymMerge &12|59| MzR =HE F4
A New Complexity Analysis of the SymMerge Algorithm

2=p
Pok-Son Kim

=oicista 4ot

Department of Mathematics, Kookmin University

Received: Mar, 22, 2015
Revised : Apr. 5, 2015
Accepted: Sep. 23, 2015
TC()rrcsponding author
pskim@kookmin. ac kr

O OF

o 5
SymMerge &8]E5S = QE4E wot v (ul=m, hi=n,m < n)o] 3t G824 g dgjSolc}
SymMerge ¥a2|E9] Bluslee} ISt BT BAS sharrt st 21979 B B4 BT A
e Zroud HIH ALbPEE B3l o]FoiHrt o] =Relile Aa7iAe] AR ak= 9 SymMerge
A 12]Z0] thk2 T special cased] SEdH= “Symmetric case’?} “Maximum spanning case’ ol ¢JojA =
TS 98l asls ARt v nSes & vusleo] A FHE AR Ho|1xl $itt “Symmetric case”
735 Alol2 m =28 n =212 k3 U] AP ti3)] SymMerge GIE}E0] BAR Sh= w3l
Aa51A| mlog %+ 4m — logm — 30|21l “Maximum spanning case 2] <% AR|Z m =28 n=2"—m
oJoje] qE4de] sl SymMerge GuEFZo] HWeE sl Huslgl A
m?+ (m+1)logm — %m +2%9& AXts] Helth F7E= o]5 F special caseoll oI 8= HlwS]

F7F AHA el ol gokd 4 Sed KAt

i Lo

o= e

719= : WA dueE, worst case complexity (IYE = 57 A=7F A

Abstract

The SymMerge algorithm is an efficient merging algorithm for input sequences u and v of sizes |ul=m
and [v|=n,m < n. We consider complexity analysis for SymMerge algorithm regarding to the required
number of comparisons, The focus of the previous complexity analysis was on finding the values of upper
bounds, i.e. showing the asymptotical optimality. In this paper, in a different way from the previous com-
plexity analysis, we show that the overall required number of comparisons for two representative special
cases “symmetric case’ and ‘maximum spanning case” can be calculated exactly i.e. the least upper bounds
regarding to the required number of comparisons are calculated, Symmerge requires exactly

mlog %+ 4m — logm — 3 comparisons for symmetric case of sizes m =2 n=2,1>k of input se-
1, 3))) . -
quences and exactly 5m +(m+1)10gm7?m+2 comparisons for maximum spanning case of sizes

m =2 n=2"—m of input sequences, Additionally we show that the complexity of the Symmerge algo-
rithm regarding to the overall required number of comparisons for these special cases can be defined by re-
currence relations,

Key Words : Merging algorithm, Complexity analysis, Recurrence relation,

This is an Open-Access article distributed
under the terms of the Creative Commons
Attribution Non-Commercial — License
(http://creativecommons,org/li-
censes/by-nc/3.0) which permits unre-
stricted non-commercial use, distribution,
and reproduction in any medium, pro-
vided the original work is properly cited,

1. Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of sizes m and n, so that the result forms one sorted sequence of m—+n
elements,

Recent work in this area are the publications [2-4], that describe algorithms which
are all asymptotically optimal regarding the number of comparisons as well as
assignments, However, these algorithms are structurally quite complex,

I 515

Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, October 2015

In [5] we presented a stable minimum storage merging al-
gorithm called SymMerge and investigated its worst case
complexity regarding the number of comparisons as well
as assignments, The focus of the complexity analysis was
on finding the values of upper bounds, i.e. showing the
asymptotical optimality, We considered the set consisting
of all merging pairs (nodes) which arise during the
computation, Then we partitioned the set into k+1 re-
cursion groups such that each recursion group 1,
i=0,1,2,-- k has at most 2’ pairs, For each recursion
group the value of upper bound for the required number
of comparisons was calculated, So, for all k+1 recursion
groups the value of upper bound for the required number
of comparisons could be calculated and showed the
asymptotical optimality of the SymMerge algorithm,

In this paper we consider complexity analysis for two spe-
cial cases of input sequences of SymMerge “symmetric
case” and “maximum spanning case” in a different way
from the previous complexity analysis, We show that the
overall required number of comparisons for these special
cases can be calculated exactly i.e. the least upper
bounds regarding to the required number of comparisons
are calculated, exactly

Symmerge requires

n . .
mlog E+4m — logm —3 comparisons for symmetric case
of sizes m=2"n=21>k of input sequences and ex-

1
actly Emz +(m+1)logm — %m +2 comparisons for

maximum spanning case of sizes m =2"n=2"—m of
input sequences,

Additionally we show that the complexity of the
Symmerge algorithm regarding to the overall required
number of comparisons for these special cases can be de-
fined by recurrence relations,

2. SymMerge Algorithm

We start with a brief introduction of our approach to
merging [5, 6], Let v and v be two adjacent ascending
sorted sequences with |ul < lvl. We decompose the longer
sequence v into three parts v,wv, such that hwl|= |ul and
either [vyl = lv;| or lvy/=lvy|+1. Then we start at the left-
most element in v and at the rightmost element in w and
compare the elements at these positions. We continue do-
ing so by symmetrically comparing element-pairs from the
outsides to the inside, There can occur at most one posi-
tion, where the relation between the compared elements

alters from 'not greater' to 'greater', So we have found the

516 | z=M

bounds for a rotation, i.e. side-changing elements, Due to

this technique of symmetric comparisons we call our algo-

rithm SymMerge. Moreover the computation for finding
the bounds for a rotation may also happen in the style of

a binary search, Then only [log(min(lullvl)) | +1 com-

parisons are necessary, By recursive application of this

technique to the arising subsequences we get a sorted
result,

Now we describe the SymMerge algorithm formally. We
dene u<v(u<w) iff x<y (x<y) for all elements
€ wu and for all elements yE v,

We merge u and v as follows:

If |ul <], then

(al) we decompose v into v,wv, such that |w|=ul
and either |vy| = lv;| or lvy| = lv;[41.

(a2) we decompose u into wyu, (luyl =0, luyl > 0)
and w into ww, (wyl >0, lwyl > 0) such that
gl = hwol, Tugl =hoyl and hyy| < hoyl, uy > w;.

(a3) we rotate u,v,w; o v w, Uy,

(a4) we recursively merge u; with vw; as well as
u, with wyv,, Let u' and v be the resulting

sequences, respectively,

else

(b1) we decompose u into wwu, such that w|=v|
and either |u,l = luy| or luyl = lu,[+1.

(b2) we decompose v into v, (lv] =0, vyl =0)
and w into w,w, (lw,l =0, hw,l > 0) such that
[,/ =lw,l, Il =hoyl and lw,| < lvyl, wy > ;.

(b3) we rotate wWylst; t0 U Wally.

(b4) we recursively merge w,w, with v, as well as

wyu, With vy, Let w' and v' be the resulting
sequences, respectively,
uw'v’ then contains all elements of u and v in sorted
order,

3. Complexity Analysis

In this section we consider complexity analysis regard-
ing the number of comparisons, Unless stated otherwise,
let us denote m=ll, n=phl, m<n, k= Llogm] ,

Further let m! and n;

y denote the sizes of sequences

merged on the ith recursion level where the index j de-
notes the order of the merged sequences, Initially (on the
recursion level 0), it holds m{=m and n)=n, On the
next recursion level 1, (m,n)) is divided into two pairs

(children nodes). We denote these by (mi,n}), (ma,nj)

http://dx.doi.org/10.5391/JKIIS.2015.25.5,515

where the sequences of lengths mj and my are merged
with the sequences of lengths nj and nj respectively, On
the recursion level ¢, the sequences of lengths
and m; are merged with the sequences of

and n;'- respectively (with 2 < j < 2%),

mi,mb,mb,- -
lengths ni,né,ng,---
In the following let (m;m;) denote a merging pair in
which the size of the left (right) sequence is mi (n;) As
result of the decomposition process we get such merging
pairs, Accordingly let (m,n) denote the pair given as an
input.

For each input pair (m,n), m <n, the SymMerge algo-
rithm generates a binary tree in which each node corre-
sponds to a merging pair (mjn}), We call such a binary
tree a decomposition tree,

Till now we have considered complexity analysis of the
SymMerge algorithm using recursion group [6]. We have
partitioned decomposition trees into several recursion
groups, In this paper we consider 2 different special cases
generated by the SymMerge algorithm and have look at a
new complexity analysis for these special cases regarding
the number of comparisons,

Symmetric Case

There are input pairs (m,n) such that in their decom-
position trees every merging pair (subsequence merging)
always triggers two nonempty merging pairs. So, if
m =2F then there are exactly 2’ merging pairs on each
recursion level 4,0 <14 < logm. We call this special case
symmetric case, Fig. 1 shows an example of symmetric

case for input pair (8,8),

5
Lemma 1, ([1] Lemma 3.1) If k= Ekj for any k; >0 and
Jj=1

5
k
integer ¢ > 0, then Zlogk <9 log2—

2! 1, Symmetric case?Q| Of
Fig. 1. An example of symmetric case

Theorem 2, Given input pair of size (m,n) of symmetric
case and let m =2"n=2.1>k, then the required num-
ber of comparisons on the recursion level k& is

2k (=9 Llog2 %] +1)=(1—k+1)2F

Proof, In symmetric case every merging pair (subsequence

log%J +1)
o

merging) always triggers two nonempty merging pairs and
the size of each pair is divided in half. For example, the
size n of the right part of the merging pair is halved on
the recursion level 0, Therefore, on the recursion level &
there are 2" merging pairs altogether and each merging
pair has the size (1,n/2%) = (1,2//2) = (1,2 %) . Hence
the required number of comparisons on the recursion lev-
el kis 2°(Llog2 *] +1)=(—k+1)2" 0

Theorem 3, If m =2",n=2.1> k, then the complexity of
the SymMerge algorithm has the least upper bound

mlog%+4m—logm—3 for any input pair (m.n) of

the symmetric case.
Proof, The binary search of recursion level 0 requires
recursion level

logm+1 comparisons, For each

i,(i=1,--,k—1) we need Qi(log%-ﬁ-l) comparisons,
k

2

On the last recursion level k& we need E(lognf’+1)
i=1

2" 2"
:Z(log%—l—l Z (log2 " +1) =2"(1— k) +2
i=1 =

comparisons, So the overall number of comparisons for all

k+1 recursion levels is logm+1+ .2 (log%Jrl)
izl
k

+E lognf+1)=logm+1+(2"—2)logm— 2122
i=1 i=1

+2F—2+42F(1—k)+2°, Since Y)i2' =(k—2)2"+2, the

i=1
complexity of the SymMerge algorithm has the least upper
bound (H2A4HA) logm +1+(2"—2) logm
~((k=2)2"+2) +2° 242 log —+2"=mlog——+4m

—logm —3. m]

Maximum Spanning Case

There are input pairs (m,n) that have the maximal re-
cursion depth m . In this case m is decomposed into either
(l(Zmi),ni) and (m—l(:mé),né) or (m—l(:m%),n%)
and (1(=mj).ny). Without loss of generality we suppose
that (m,n) is decomposed into (1(=m!l),n}) and
(m—1(=m3),n3) and each (mini),i=1,2,---;m—2 is
(1(=mith),nith and

(mi—1(=mi*tt),ni*"), We call this case maximum span-

decomposed into

ning case. Fig. 2 shows a decomposition tree for max-

SymMerge LT2|E9| M2 =2xiE 2M | 517

Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, October 2015

imum spanning case,

?ﬂz mll]) recursion level 0 n(= n?)
\ s
I(= m%)m —1(= mf_l>) recursion level 1 n% nd
‘ Z\
1 m—2 recursion level 2 n% n3
/\ o N\,
1" m—3 recursion level 3 ”;13 n%
A\ . A,
1m—4 H ni nj
: :
2\
m—1 —1

H m
1 m — (m — 1) recursion level m — 1 nf""* nj

T2 2. Maximum Spanning®| 42
Figure 2, Maximum spanning case

We have the following lemma,

ZA
Lemma 4. ¥,(llogi) +1)=k+2"(k—1)+1,
i=2

k—1
Proof, It holds ,(llogil +1)=k+Yji2" +2¢—1,

=2 i=1
=1 o
Since Y,i2' = (k—2)2"+2, it holds »,([logi|+1)
i=1 i=2
=k+(k—2)2F+24+2"—1=k+2"(k—1) +1. o

Theorem 5. If m =2 then the complexity of the
SymMerge algorithm has the upper bound mlog%

+(m+1)logm+1 for any input sequence (m,n) of the
maximum spanning case,

Proof, The binary search of recursion level 0 requires
logm +1 comparisons, On each recursion level 4,
(1<i<m—2) we need |[logn!]+1+ llog(m—i)]
+1 comparisons, For the final recursion level m—1 we
need [logn” '] +1+ [logny '] +1

m—1

Here, it holds Y, ni+nl'" ' =n. So the overall number

=1

comparisons,

of comparisons for all m recursion levels is equal to
m—1 m
Y (Liogni | +1)+ [logng ™t | +1+3(Llogi | +1).
i=1 i=2
m—1
Since Y, ni+nl '=n and by lemma 1 and lemma 2 ,
i=1

SymMerge needs at most mlog %+ m+logm

+m(logm—1) +1:m10g%+(m+1)logm+l compar-

isons for the maximum spanning case. o

Now we compare the least upper bound

mlog %—i— 4m —logm — 3 for the symmetric case with the
upper bound mlog % +(m+1)logm+1 for the max-

. . n
imum spanning case, We have mlog—
m

+(m+1)10gm+1—(mlog%+4m* logm —3)

=mlogm+2logm—4m+4 >0 for all m=2" This
means that the complexity of the SymMerge algorithm has

the upper bound mlog%+(m+1)logm+1 for any in-

put pair (m,n) of the symmetric case, So the following
corollary holds,

Corollary 6, If m=2% then the complexity of the
SymMerge algorithm has the upper bound mlog%

+(m+1)logm+1 for the symmetric case and maximum

spanning case,

Additionally corollary 6 can be explained as follows:

The overall required number of comparisons from re-

cursion level 0 to recursion level k—1 for the symmetric
k=1

case is logm+1+ ZZi(log%-i-l), Here, the number

i=1

of the considered merging pairs is
1+2++28"1=2F—1 The overall required number of
comparisons for the merging pairs

(m?an(l))v(m;n;)a(mgvng)y'"7(mgl727n2m72) of the max-
m

imum spanning case is »,(L logi | +1). Here, the num-
iz2

ber of the considered merging pairs is m—1=2"—1 as

well, However we know it holds logm+1+

k=1 m
i m .

22 (log?+1) < Z([logi) +1).

i=1 =2

Further, the required number of comparisons for the re-

2k

cursion level k of the symmetric case is Y, (lognf+1)
i=1

=2k {log%J +2% The required number of compar-

isons for the remaining part of the maximum spanning
m—1

case is E([lognﬁJ +1)+ [logn;”'flJ +1 where it
i=1

m—1
holds Y ni+ny '=n. By lemma 1, we have
i=1
m—1) n
M (logni | +1)+ [logny~"] +1 <2 {logﬁ J +2F,
i=1

Hence, the least upper bound mlog%+4m710gm73

http://dx.doi.org/10.5391/JKIIS.2015.25.5,515

. . n
for the symmetric case is equal or less than mlogg

+(m+1)logm+1 which corresponds to upper bound of

the maximum spanning case.

In [7] we considered the following relationship between
m and n of input pair (m,n) for maximum spanning
case,

Theorem 7. [7] Let any input pair (m,n) of maximum
spanning case be given, Then (m,n) satisfies the relation-
ship between m and n such that n > 2™ —m,

Theorem 8, let any input pair (m,n), n=2"—m of

maximum spanning case be given, Then
(m—1i,2"""—(m—1)) is decomposed into
(1,2m 0+ —1) and

(m—(i+1),2" D — (i
level ¢,7=0,1,---

—(i+1))) on each recursion
m=2,

Proof, Since input pair (m,2™ —m) corresponds to max-
imum spanning case, (m,2"—m) is decomposed into
(1(=m}),n}) and (m—1(=mj).ny) on the recursion

1 2"—=m—m

level 0 where it holds n; = 5 +(m—1)=2"""
1 2m_m_m m—1

—1 and nj==—2—"41=2"""~(m—1). By the

identical calculation method (m—1,2""'—(m—1)) is de-

composed into (1,2" 2—1) and (m—2,2" % —(m—2))

on the recursion level 1, -, (m—4,2"""—(m—14)) is

(1,2'"7(‘*1)—1) and (m—(i+1),
(i4+1))) on the recursion level i and so

decomposed into
2m*(1‘,+1) _ (m _

on, Further, (m*(m*Z),me(mﬂ)*(m*(m*Z)))
=(2,2) is decomposed into (1,2m= ™=V _1) =(1,1) and
(m—(m—1),2""""Y—(m—(m—1)))=(1,1) on the
recursion level m —2 where (1,27”7(7”71)—1) =(1,1) and

(m—(m—=1),2""""V—(m—(m—1)))=(1,1) corre-
spond the last two input pairs on the recursion level
m—1, m]

-1, n?=2""2-1
:2m (mfl)il

From theorem 8 we have nj=2"""!

)

- p 2 =gm-(m=2) ny'”

np~t=2""""Y 1 Therefore we can see that it holds
nhtnd 4t n 4y b =0m o1 42— 4 22—
+2'—1+1=2(2"""=1)—(m—1)+1=2"—m=n,
Further the number of the required comparisons for merg-
ing of maximum spanning case can be calculated exactly
as follows:

Theorem 9, Let any input pair (m,n) with m =2" and
n=2"—m of maximum spanning case be given. Then

1 3
SymMerge requires exactly 5m2+(m+1)logm75m+2
comparisons for merging input pair (m,n).

Proof, Since m =2% and n=2"—m, the overall number
of the required comparisons for merging (m,n) is

m m—1
M Llogil +1)+3(

l1og(27—=1) | +1). Since

i=1 i=1
m 2
>i(Llogil +1) E L logi | +1) =k+2"(k—1) +2
i=1 =

m—1
and Y (Llog(2@—1)] +1)=(m—2)+(m—3) +-+1

i=1

m(m—1) &
+(m*1)=f, we have Ek+2"(k—1)+2
+7m(ﬂ;_1)=10gm+m(logm*1)+2+%m2*%m
1, 3

=5m +(m+1)logm—§m+2, o

4. Complexity Analysis of SymMerge
Algorithm using Recurrence Relation

In this section we show the complexity for the special
cases ‘symmetric case and maximum spanning case’ re-
garding to the number of comparisons can be defined by
recurrence relations,

Let 7,(m,n) denote the overall required number of
comparisons for any input pair (m,n) of the symmetric
case, Then 7,(m,n) is given as follows:

Definition 10, The complexity 7,(m,n),m < n is defined
recursively as follows:
7,(1;n) = llogn] +1

[E—

12

en[%]]3]

m,n) denote the overall required number of com-

T,(m;n) = Llogm | +1+ T.({%

Let 7,,(
parisons for any input pair (m.,n) of the maximum span-
ning case, Then Tm(mm) is given as follows:
Definition 11, The complexity 7}, (m,n),m < n is defined

recursively as follows:

24 | 519

SymMerge Y12|E9| MEZR i

Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, October 2015

T,(Ln) = llognl +1
T, (m.n)= llogm | +1+ T, ({ J+m 1)
n—
+7,(m { . }+1)

Now, let 7;,,(m,n) denote the overall required number
of comparisons for input (m,n) of the case such that on
the recursion level 0 (m,n) is partitioned to
(0(=m}),n}) and (m(=mj}),ny) where (m(=mj),n})
corresponds with the maximum special case, Then it holds
n—m
2
following we show that it holds 7}, (m,n) < T, (m,n)

0,m m

T

0,m

(m,n) = uong+1+Tm(m,[p, In the

for any input (m,n).

Theorem 8, For any (m,n),m <n,T; (m.,n) < T, (mn).
Proof. If m=1, then 7, (1,n)= llognl +1

0,m

< 7, (1,n), If m > 2, then the following holds:

Ty,m(mon) = Llogm | +1+ 1, (m, { 5 b

2
= Llogm | +1+ 7,1 | B2 | 1)
+7, =1, [25 m} 1)
Here,let 3= { }
T, (mm) = Llogm | +1+1T,({ 5 J+m 1)
+ T, (m { e } +1)
Since
7.1, {B_me +m—1)= {log({ ﬂ;m } +m 1)J+1
< {log({ "_2 J +m*1)J +1=17,(1, { L 2m
and
T (m—1, VFTT” +1< T, (m— { e } +1,

we have T, (m,n) < T, (m.n).

Further, by applying theorem 8, the definition 7, (m,n)

m

with n=2"—m can be simplified as follows:
Let 7,

L ee(m, 2™ —m) denote the overall required number

of comparisons for any input pair (m,2"™ —m) of the

maximum spanning case, i.e. 7,..(m,2" —m) is a

simplified definition of 7,(m,2" —m),

Definition 12, The complexity 7, 2™ —m) is defined

msc (

recursively as follows:

520 | =M

:Tmsc(Ll) =1
T,.(m2"=m)= [logm | +1+ Llog(2" ' —1)] +1
+7 (m—12""1—(m—-1))

msc

5. Conclusion

We showed that the SymMerge algorithm requires ex-

actly mlog %4— 4m—logm —3 comparisons for sym-

metric case of m=2n=2.1>k and exactly

1 3
Emz +(m+1)logm — 5m +2 comparisons for maximum

spanning case of m=2n=2"—m where m and n
represent the sizes of input sequences u and v,
Additionally we showed that the complexity of the
Symmerge algorithm regarding to the overall required
number of comparisons for these special cases can be de-
fined by recurrence relations.

Based on this study, the least upper bound for com-
plexity of the SymMerge algorithm may be calculated. We
conjecture that if m =2¥,n=2"—m then the complexity
of the SymMerge algorithm has the least upper bound

mlog%+4mflogm*3 in general,

References

[11 K. Dudzinski and A, Dydek, “On a stable storage
merging algorithm,”
Vol. 12, pp. 5-8, February 1981,

[2] V. Geert, J. Katajainen, T. Pasanen, “Asymptotically

Information Processing Letters,

ecient in-place merging.” Theoretical ~Computer
Science 237 (1/2), pp. 159-181, 2000,

(31 J. Chen,
Theoretical Computer Science 302 (1/3), pp. 191-210,
2003,

[4] P, S. Kim and A. Kutzner, “Ratio Based Stable

TAMC 2008, Lecture Notes in
Computer Science, Springer, Vol, 4978, pp. 246-257,
2008.

[5] P. S. Kim and A, Kutzner, “Stable Minimum Storage

ESA 2004,
Lecture Notes in Computer Science, Springer, Vol,
3221, pp. 714-723, 2004,

[6] P.S. Kim and A. Kutzner, ‘On a Simple and Stable
Merging Algorithm,” Journal of The Korean Institute
of Intelligent Systems, Vol. 20, No. 4, pp. 455-462,

“‘Optimizing stable in-place merging.”

in-Place Merging,”

Merging by Symmetric Comparisons,”

http://dx.doi.org/10.5391/JKIIS.2015.25.5.515

2010,

[71 P. S. Kim, “Complexity of the Symmerge Algorithm,”
Journal of The Korean Institute of Intelligent Systems,
Vol. 18, No. 2, pp. 272-277, 2008,

XN XA

U= M(Pok—Son Kim)
20021 d~& A : Professor,
Department of Mathematics,
Kookmin University

FAFoE ¢ Merging Algorithms, Scheduling Problems,
Complexity Analysis

Phone : +82-2-910-4747

E-mail : pskim@kookmin.ac kr

SymMerge €T2|E0| M2 2XiE 24 | 521

