
Journal of Korean Institute of Intelligent Systems
Vol. 25, No. 5, October 2015, pp. 515-521
http://dx.doi.org/10.5391/JKIIS.2015.25.5.515

 | 515

1. Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted

sequences of sizes  and , so that the result forms one sorted sequence of 

elements.

Recent work in this area are the publications [2-4], that describe algorithms which

are all asymptotically optimal regarding the number of comparisons as well as

assignments. However, these algorithms are structurally quite complex.

SymMerge 알고리즘의 새로운 복잡도 분석

A New Complexity Analysis of the SymMerge Algorithm

김복선
Pok-Son Kim

국민대학교 수학과
Department of Mathematics, Kookmin University

This is an Open-Access article distributed

under the terms of the Creative Commons

Attribution Non-Commercial License

(h t t p : / / c r ea t i ve commons .o r g / l i-

censes/by-nc/3.0) which permits unre-

stricted non-commercial use, distribution,

and reproduction in any medium, pro-

vided the original work is properly cited.

요 약
SymMerge 알고리즘은 두 입력수열 와  (   ,     ≤ )에 대한 효율적 병합 알고리즘이다.

SymMerge 알고리즘의 비교횟수와 관련한 복잡도 분석을 하고자 하며 지금까지의 복잡도 분석은 복잡도의 상계

값을 찾으므로 점근적 계산방법을 통해 이루어졌다. 이 논문에서는 지금까지의 분석방법과는 달리 SymMerge

알고리즘의 대표적 두 special case에 해당하는 “Symmetric case”와 “Maximum spanning case”에 있어서 병

합을 위해 요구되는 정확한 비교횟수를 즉 비교횟수의 최소상계 값을 계산해 보이고자 한다. “Symmetric case”
의 경우 사이즈        ≥ 인 임의의 입력수열에 대해 SymMerge 알고리즘이 필요로 하는 비교횟수

는 정확하게  log

   log 이고 “Maximum spanning case”의 경우 사이즈       

인 임의의 입력수열에 대해 SymMerge 알고리즘이 필요로 하는 비교횟수는 정확하게



   log 


  임을 계산해 보인다. 추가로 이들 두 special case에 있어서 요구되는 비교횟

수가 재귀적 함수에 의해 정의될 수 있음을 보인다.

키워드 : 머징 알고리즘, worst case complexity (키워드 수는 5개 정도가 적당)

Abstract
The SymMerge algorithm is an efficient merging algorithm for input sequences  and  of sizes   

and     ≤  . We consider complexity analysis for SymMerge algorithm regarding to the required

number of comparisons. The focus of the previous complexity analysis was on finding the values of upper

bounds, i.e. showing the asymptotical optimality. In this paper, in a different way from the previous com-

plexity analysis, we show that the overall required number of comparisons for two representative special

cases “symmetric case” and “maximum spanning case” can be calculated exactly i.e. the least upper bounds

regarding to the required number of comparisons are calculated. Symmerge requires exactly

 log

   log  comparisons for symmetric case of sizes        ≥  of input se-

quences and exactly 

   log 


   comparisons for maximum spanning case of sizes

       of input sequences. Additionally we show that the complexity of the Symmerge algo-

rithm regarding to the overall required number of comparisons for these special cases can be defined by re-

currence relations.

Key Words : Merging algorithm, Complexity analysis, Recurrence relation.

Received: Mar. 22, 2015

Revised : Apr. 5, 2015

Accepted: Sep. 23, 2015
†Corresponding author

pskim@kookmin.ac.kr

1976-9172
2288-2324

ISSN(Print)
ISSN(Online)

Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, October 2015

516 | 김복선

In [5] we presented a stable minimum storage merging al-

gorithm called SymMerge and investigated its worst case

complexity regarding the number of comparisons as well

as assignments. The focus of the complexity analysis was

on finding the values of upper bounds, i.e. showing the

asymptotical optimality. We considered the set consisting

of all merging pairs (nodes) which arise during the

computation. Then we partitioned the set into  re-

cursion groups such that each recursion group ,

  ⋯  has at most  pairs. For each recursion

group the value of upper bound for the required number

of comparisons was calculated. So, for all  recursion

groups the value of upper bound for the required number

of comparisons could be calculated and showed the

asymptotical optimality of the SymMerge algorithm.

In this paper we consider complexity analysis for two spe-

cial cases of input sequences of SymMerge “symmetric

case” and “maximum spanning case” in a different way

from the previous complexity analysis. We show that the

overall required number of comparisons for these special

cases can be calculated exactly i.e. the least upper

bounds regarding to the required number of comparisons

are calculated. Symmerge requires exactly

 log

 log comparisons for symmetric case

of sizes       ≥  of input sequences and ex-

actly 

log


 comparisons for

maximum spanning case of sizes      of

input sequences.

Additionally we show that the complexity of the

Symmerge algorithm regarding to the overall required

number of comparisons for these special cases can be de-

fined by recurrence relations.

2. SymMerge Algorithm

We start with a brief introduction of our approach to

merging [5, 6]. Let  and  be two adjacent ascending

sorted sequences with ≤ . We decompose the longer

sequence  into three parts  such that    and

either    or   +1. Then we start at the left-

most element in  and at the rightmost element in  and

compare the elements at these positions. We continue do-

ing so by symmetrically comparing element-pairs from the

outsides to the inside. There can occur at most one posi-

tion, where the relation between the compared elements

alters from 'not greater' to 'greater'. So we have found the

bounds for a rotation, i.e. side-changing elements. Due to

this technique of symmetric comparisons we call our algo-

rithm SymMerge. Moreover the computation for finding

the bounds for a rotation may also happen in the style of

a binary search. Then only ⌊logmin⌋ com-

parisons are necessary. By recursive application of this

technique to the arising subsequences we get a sorted

result.

Now we describe the SymMerge algorithm formally. We

dene ≤     iff ≤     for all elements

∈ and for all elements ∈.
We merge  and  as follows:

If ≤ , then

(a1) we decompose  into  such that  

and either    or   .

(a2) we decompose  into  (≥ , ≥ )

and  into  ≥ , ≥  such that

  ,    and ≤ ,  .

(a3) we rotate  to .

(a4) we recursively merge  with  as well as

 with . Let ′ and ′ be the resulting

sequences, respectively.

else

(b1) we decompose  into  such that  

and either    or   .

(b2) we decompose  into  (≥ , ≥ )

and  into  ≥ , ≥  such that

  ,    and ≤ ,   .

(b3) we rotate  to .

(b4) we recursively merge  with  as well as

 with . Let ′ and ′ be the resulting

sequences, respectively.

′′ then contains all elements of  and  in sorted

order.

3. Complexity Analysis

In this section we consider complexity analysis regard-

ing the number of comparisons. Unless stated otherwise,

let us denote   ,  , ≤, ⌊log⌋.

Further let 
 and 

 denote the sizes of sequences

merged on the th recursion level where the index  de-

notes the order of the merged sequences. Initially (on the

recursion level ), it holds 
  and 

  . On the

next recursion level , (

) is divided into two pairs

(children nodes). We denote these by 

 




http://dx.doi.org/10.5391/JKIIS.2015.25.5.515

SymMerge 알고리즘의 새로운 복잡도 분석 | 517

where the sequences of lengths 
 and 

 are merged

with the sequences of lengths 
 and 

 respectively. On

the recursion level , the sequences of lengths




 
 ⋯ and 

 are merged with the sequences of

lengths 
 
 
 ⋯ and 

 respectively (with ≤ ≤ ).

In the following let (

) denote a merging pair in

which the size of the left (right) sequence is 
 

 . As

result of the decomposition process we get such merging

pairs. Accordingly let  denote the pair given as an

input.

For each input pair  , ≤, the SymMerge algo-

rithm generates a binary tree in which each node corre-

sponds to a merging pair (

). We call such a binary

tree a decomposition tree.

Till now we have considered complexity analysis of the

SymMerge algorithm using recursion group [6]. We have

partitioned decomposition trees into several recursion

groups. In this paper we consider 2 different special cases

generated by the SymMerge algorithm and have look at a

new complexity analysis for these special cases regarding

the number of comparisons.

Symmetric Case

There are input pairs  such that in their decom-

position trees every merging pair (subsequence merging)

always triggers two nonempty merging pairs. So, if

 , then there are exactly  merging pairs on each

recursion level   ≤ ≤ log. We call this special case

symmetric case. Fig. 1 shows an example of symmetric

case for input pair .

Lemma 1. ([1] Lemma 3.1) If 




 for any    and

integer  ≥ , then 


 log ≤  log



.

그림 1. Symmetric case의 예
Fig. 1. An example of symmetric case

Theorem 2. Given input pair of size  of symmetric

case and let       ≥ , then the required num-

ber of comparisons on the recursion level  is

⌊log ⌋  ⌊log⌋  .
Proof. In symmetric case every merging pair (subsequence

merging) always triggers two nonempty merging pairs and

the size of each pair is divided in half. For example, the

size  of the right part of the merging pair is halved on

the recursion level . Therefore, on the recursion level 

there are  merging pairs altogether and each merging

pair has the size      . Hence

the required number of comparisons on the recursion lev-

el  is ⌊log⌋   □
Theorem 3. If       ≥ , then the complexity of

the SymMerge algorithm has the least upper bound

 log

 log for any input pair  of

the symmetric case.

Proof. The binary search of recursion level 0 requires

log comparisons. For each recursion level

   ⋯ we need  log


 comparisons.

On the last recursion level  we need 





log 







log

 






log    
comparisons. So the overall number of comparisons for all

 recursion levels is log 




 log









log  log  log






 . Since 




    , the

complexity of the SymMerge algorithm has the least upper

bound (최소상계) log  log
   log


 log




 log . □

Maximum Spanning Case

There are input pairs  that have the maximal re-

cursion depth . In this case  is decomposed into either




 and 


 or 




and 


. Without loss of generality we suppose

that  is decomposed into 


 and




 and each 
 
    ⋯ is

decomposed into 


 and


 


. We call this case maximum span-

ning case. Fig. 2 shows a decomposition tree for max-

Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, October 2015

518 | 김복선

imum spanning case.

그림 2. Maximum Spanning의 경우
Figure 2. Maximum spanning case

We have the following lemma.

Lemma 4. 





⌊log⌋  .

Proof. It holds 





⌊log⌋  




  .

Since 




   , it holds 





⌊log⌋
   . □

Theorem 5. If  , then the complexity of the

SymMerge algorithm has the upper bound  log


 log for any input sequence  of the

maximum spanning case.

Proof. The binary search of recursion level  requires

log comparisons. On each recursion level 

≤ ≤ we need ⌊log⌋⌊log ⌋
 comparisons. For the final recursion level  we

need ⌊log⌋⌊log⌋ comparisons.

Here, it holds 





 

  . So the overall number

of comparisons for all  recursion levels is equal to






⌊log⌋⌊log⌋




⌊log⌋.

Since 





 

   and by lemma 1 and lemma 2 ,

SymMerge needs at most  log

 log

log log

log compar-

isons for the maximum spanning case. □

Now we compare the least upper bound

 log

 log for the symmetric case with the

upper bound  log

 log for the max-

imum spanning case. We have  log


 log log

 log

 loglog≥  for all  . This

means that the complexity of the SymMerge algorithm has

the upper bound  log

 log for any in-

put pair  of the symmetric case. So the following

corollary holds.

Corollary 6. If  , then the complexity of the

SymMerge algorithm has the upper bound  log


 log for the symmetric case and maximum

spanning case.

Additionally corollary 6 can be explained as follows:

The overall required number of comparisons from re-

cursion level 0 to recursion level  for the symmetric

case is log 




 log


. Here, the number

of the considered merging pairs is

⋯  . The overall required number of

comparisons for the merging pairs









⋯


 of the max-

imum spanning case is 




⌊log⌋. Here, the num-

ber of the considered merging pairs is   as

well. However we know it holds log






 log


 ≤





⌊log⌋.
Further, the required number of comparisons for the re-

cursion level  of the symmetric case is 




log 
 ⌊log ⌋. The required number of compar-

isons for the remaining part of the maximum spanning

case is 




⌊log⌋⌊log⌋ where it

holds 





 

  . By lemma 1, we have






⌊log⌋⌊log⌋≤ ⌊log ⌋
Hence, the least upper bound  log


 log

http://dx.doi.org/10.5391/JKIIS.2015.25.5.515

SymMerge 알고리즘의 새로운 복잡도 분석 | 519

for the symmetric case is equal or less than  log


 log which corresponds to upper bound of

the maximum spanning case.

In [7] we considered the following relationship between

 and  of input pair  for maximum spanning

case.

Theorem 7. [7] Let any input pair  of maximum

spanning case be given. Then  satisfies the relation-

ship between  and  such that ≥ .

Theorem 8. Let any input pair  ,   of

maximum spanning case be given. Then

  is decomposed into

  and

  on each recursion

level    ⋯.

Proof. Since input pair  corresponds to max-

imum spanning case,  is decomposed into




 and 


 on the recursion

level  where it holds 
 


  

 and 
 


  . By the

identical calculation method   is de-

composed into   and  

on the recursion level , ⋯,   is

decomposed into   and 

  on the recursion level  and so

on. Further,  

  is decomposed into     and

    on the

recursion level  where     and

    corre-

spond the last two input pairs on the recursion level

. □

From theorem 8 we have 
   , 

   ,

⋯, 
   , 

   ,


   . Therefore we can see that it holds


 

 ⋯
 

    ⋯ 

       .

Further the number of the required comparisons for merg-

ing of maximum spanning case can be calculated exactly

as follows:

Theorem 9. Let any input pair  with   and

  of maximum spanning case be given. Then

SymMerge requires exactly 

log




comparisons for merging input pair .

Proof. Since   and   , the overall number

of the required comparisons for merging  is






⌊log⌋




⌊log  ⌋. Since






⌊log⌋ 





⌊log⌋  

and 




⌊log  ⌋  ⋯
 


, we have 




 loglog


  




 


log


. □

4. Complexity Analysis of SymMerge
Algorithm using Recurrence Relation

In this section we show the complexity for the special

cases “symmetric case and maximum spanning case” re-

garding to the number of comparisons can be defined by

recurrence relations.

Let  denote the overall required number of

comparisons for any input pair  of the symmetric

case. Then  is given as follows:

Definition 10. The complexity  ≤ is defined

recursively as follows:

  ⌊log⌋
 ⌊log⌋ ⌊⌋⌊⌋

⌈⌉⌈⌉
Let  denote the overall required number of com-

parisons for any input pair  of the maximum span-

ning case. Then  is given as follows:

Definition 11. The complexity  ≤ is defined

recursively as follows:

Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, October 2015

520 | 김복선

  ⌊log⌋
 ⌊log⌋⌊⌋

 ⌈⌉

Now, let  denote the overall required number

of comparisons for input  of the case such that on

the recursion level   is partitioned to




 and 


 where 




corresponds with the maximum special case. Then it holds

 ⌊log⌋⌈⌉. In the

following we show that it holds  ≤

for any input .

Theorem 8. For any  ,≤, ≤.

Proof. If  , then  ⌊log⌋
≤. If ≥, then the following holds:

 ⌊log⌋⌈⌉
⌊log⌋⌊⌋
⌈⌉
   ⌈⌉

 ⌊log⌋⌊⌋
⌈⌉

Since

⌈⌉ ⌊log ⌈⌉⌋
≤⌊log ⌊⌋⌋ ⌊⌋
and

⌈⌉≤⌈⌉,
we have  ≤.

Further, by applying theorem 8, the definition 

with   can be simplified as follows:

Let 
 denote the overall required number

of comparisons for any input pair  of the

maximum spanning case, i.e. 
 is a

simplified definition of 
.

Definition 12. The complexity 
 is defined

recursively as follows:

  


 ⌊log⌋⌊log  ⌋


 

5. Conclusion

We showed that the SymMerge algorithm requires ex-

actly  log

 log comparisons for sym-

metric case of       ≥  and exactly




log


 comparisons for maximum

spanning case of      where  and 

represent the sizes of input sequences  and .

Additionally we showed that the complexity of the

Symmerge algorithm regarding to the overall required

number of comparisons for these special cases can be de-

fined by recurrence relations.

Based on this study, the least upper bound for com-

plexity of the SymMerge algorithm may be calculated. We

conjecture that if      , then the complexity

of the SymMerge algorithm has the least upper bound

 log

 log in general.

References

[1] K. Dudzinski and A. Dydek. “On a stable storage

merging algorithm.” Information Processing Letters,

Vol. 12, pp. 5-8, February 1981.

[2] V. Geert, J. Katajainen, T. Pasanen, “Asymptotically

ecient in-place merging.” Theoretical Computer

Science 237 (1/2), pp. 159-181, 2000.

[3] J. Chen, “Optimizing stable in-place merging.”

Theoretical Computer Science 302 (1/3), pp. 191-210,

2003.

[4] P. S. Kim and A. Kutzner, “Ratio Based Stable

in-Place Merging,” TAMC 2008, Lecture Notes in

Computer Science, Springer, Vol. 4978, pp. 246-257,

2008.

[5] P. S. Kim and A. Kutzner, “Stable Minimum Storage

Merging by Symmetric Comparisons,” ESA 2004,

Lecture Notes in Computer Science, Springer, Vol.

3221, pp. 714-723, 2004.

[6] P. S. Kim and A. Kutzner, “On a Simple and Stable

Merging Algorithm,” Journal of The Korean Institute

of Intelligent Systems, Vol. 20, No. 4, pp. 455-462,

http://dx.doi.org/10.5391/JKIIS.2015.25.5.515

SymMerge 알고리즘의 새로운 복잡도 분석 | 521

2010.

[7] P. S. Kim, “Complexity of the Symmerge Algorithm,”

Journal of The Korean Institute of Intelligent Systems,

Vol. 18, No. 2, pp. 272-277, 2008.

저 자 소 개

김복선(Pok-Son Kim)
2002년~현재 : Professor,

Department of Mathematics,

Kookmin University

관심분야 : Merging Algorithms, Scheduling Problems,

Complexity Analysis

Phone : +82-2-910-4747

E-mail : pskim@kookmin.ac.kr

