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LAGRANGE MULTIPLIER METHOD FOR SOLVING

VARIATIONAL INEQUALITY IN MECHANICS

Robert V. Namm and Gyungsoo Woo

Abstract. Lagrange multiplier method for solving the contact problem
in elasticity is considered. Based on lower semicontinuity of sensitivity
functional we prove the convergence of modified dual scheme to corre-
sponding saddle point.

Introduction

Duality methods based on classical schemes for constructing Lagrangian
functionals are widely used for solving variational inequalities in mechanics. In
general it is not able to prove their convergence to the corresponding saddle
point. For coercive variational inequalities the convergence with respect to the
primal variable can be shown only. It is provided under assumption that the
step size of dual variable is sufficiently small. For semicoercive variational in-
equalities it is not able to use classical Lagrangian functional because of the
quadratic form of the functional to be minimized has a nontrivial null space.
To remedy this situation, a modified Lagrangian functionals are examined. In
order to prove that duality method based on modified Lagrangian functional
converges to a saddle point we show that the corresponding sensitivity func-
tional is a weakly lower semicontinuous in the original Hilbert space.

1. Semicoercive contact problem of elasticity

Consider a two-dimensional contact problem between an trapezoid elastic
body Ω and an absolutely rigid support (Figure 1).

The boundary Γ of domain Ω is equal to ΓO

⋃
ΓK

⋃
ΓP , where ΓO, ΓK and

ΓP are open pair wise disjoint subset of Γ such that mes ΓO and mes ΓK are
positive.
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Figure 1. Elastic body and rigid support

For the displacement vector u = (u1, u2) we define the strain tensor

εij =
1

2
(
∂ui

∂xj
+
∂uj

∂xi
), i, j = 1, 2,

and the stress tensor σij(u) = cijpmεpm(u), where i, j, p,m = 1, 2; cijpm =
cjipm = cpmij ; summation is implied over repeated indexes.

Denote n = (n1, n2) is a unit outward normal vector on Γ; un = u · n;
ut = u − unn; σi(u) = σij(u)nj for i = 1, 2; σ(u) = (σ1(u), σ2(u)); σn(u) =

σij(u)ninj ; σt(u) = σ(u)− σn(u)n; σij,j(u) =
∂σij(u)
∂xj

, i, j = 1, 2.

For given vector-functions F = (f1, f2) and T = (T1, T2), consider the
boundary value problem [5, 8]

(1)

−σij,j(u) = fi in Ω, i = 1, 2,

un = 0, σt(u) = 0 on ΓO,

σij(u)nj = Ti on ΓP , i = 1, 2,

un ≤ 0, σt(u) ≤ 0, unσn(u) = 0, σt(u) = 0 on ΓK .

Define the set (see Figure 1)

K = {v ∈ [H1(Ω)]2 : vn = 0 on ΓO, vn ≤ 0 on ΓK}.

Assume that cijpm ∈ L∞(Ω), i, j, p,m = 1, 2; F ∈ [L2(Ω)]
2; and T ∈

[L2(ΓP )]
2. Suppose that the nonlinear boundary value problem has a solution

u ∈ [H2(Ω)]2. Then it can be shown that u satisfies the variational inequality
[5, 8]

(2) a(u, v − u)−

∫

Ω

fi(vi − ui)dΩ−

∫

ΓP

Ti(vi − ui)dΓ ≥ 0, ∀v ∈ K,

where a(u, v) =
∫
Ω cijpmεpm(u)εij(v)dΩ.



LAGRANGE MULTIPLIER METHOD 1197

The variational inequality (2) can be present in the following way

(3)
{
J(v) = 1

2a(v, v)−
∫
Ω fividΩ−

∫
ΓP
TividΓ−min

v∈K
.

The kernel R of the bilinear form a(u, v) is not empty in [H1(Ω)]2 and
consists of the vector function ρ = (ρ1, ρ2), where ρ1 = a1− bx2, ρ2 = a2+ bx1;
and a1, a2 and b are arbitrary fixed scalars.

Assuming that there exists a constant α0 > 0 such that

cijpmϕijϕpm ≥ α0ϕijϕij on Ω

(ϕij are arbitrary), the quadratic form a(v, v) is positive definite on the orthog-
onal complement R⊥ of R with respect to inner product [3]

(4) 〈u, v〉 =

∫

Ω

∂ui

∂xj

∂vi

∂xj
dΩ+ (

∫

Ω

uidΩ)(

∫

Ω

vidΩ).

Let us define the space

W = {v ∈ [H1(Ω)]2 : vn = 0 on ΓO}.

The subspace R̃ = W
⋂
R is a set of virtual rigid displacements (i.e., dis-

placements of Ω as an absolutely rigid body with the strict (two-sides) condi-

tions being preserves). According to Figure 1, the set R̃ is a one-dimensional
set and looks in the following way

R̃ = {ρ = (ρ1, ρ2) : ρ1 = a, ρ2 = 0},

where a is an arbitrary constant.
Since ΓK is not parallel to ΓO, a unit outward normal vector n on ΓK

satisfies the condition n1 6= 0. According to Figure 1, n1 > 0 on ΓK . Then

(5) R̃ ∩K = {ρ = (a, 0): a ≤ 0}.

It is shown in [5] that the form

(6)

(∫

Ω

cijpmεij(v)εpm(v)dΩ +
( ∫

ΓK

vndΓ
)2
) 1

2

is a norm in the space W. This norm is equivalent to norm corresponding to
scalar product (4).

From (5) the solvability condition of problem (3) follows [1, 5]

(7)

∫

Ω

F1dΩ +

∫

ΓP

T1dΓ > 0.
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2. The duality method

For arbitrary m ∈ L2(ΓK) we introduce the set

Km = {v ∈ W : vn ≤ m on ΓK}

and for all functions m ∈ L2(Γ), define the sensitivity functional

χ(m) =

{
inf

v∈Km

J(v), if Km 6= ∅,

+∞, otherwise.

It is easy to see that if a function m ∈ L2(Γ) is lower bounded on ΓK , the
corresponding set Km is not empty and inf

v∈Km

J(v) > −∞ [1]. The set Km can

be empty if m ∈ L2(ΓK)\H1/2(ΓK) and not lower bounded on ΓK (see [7, 9]).
Then χ(m) is a proper convex functional on L2(ΓK), but it’s effective domain
domχ = {m ∈ L2(ΓK) : χ(m) < +∞} does not coincide with L2(ΓK). Notice
that domχ is a convex but not closed set. In this case, domχ = L2(ΓK).

Remark. In our earlier publications [11, 12, 14], it was erroneously assumed
that the effective domain of the sensitivity functional is identical to L2(ΓK).
In this paper, we correct this inaccuracy. All the theorems on the convergence
of duality methods presented in those earlier publications remain valid.

We define the following functional on the space W × L2(ΓK)× L2(ΓK)

K(v, l,m) =

{
J(v) + 1

2r

∫
Γ
((l +m)2 − l2)dΓ, if vn ≤ m on ΓK ,

+∞, otherwise,

and modified Lagrangian functional M(v, l) on space W × L2(ΓK)

M(v, l) = inf
m
K(v, l,m) = J(v) +

1

2r

∫

Γ

((
(l + rvn)

+
)2

− l2
)
dΓ.

Here r > 0 is a constant, (l + rvn)
+ = max{0, l+ rvn}.

Let us introduce the modified dual functional

(8) M(l) = inf
v
M(v, l) = inf

v

{
J(v) +

1

2r

∫

Γ

((
(l + rvn)

+
)2

− l2
)
dΓ

}
.

Functional M(l) has the another presentation [11, 14]

(9) M(l) = inf
m

{
χ(m) +

∫

Γ

lmdΓ +
r

2

∫

Γ

m2dΓ

}
.

Definition 1. A point (v, l) ∈ W × L2(ΓK) is called a saddle point of the
modified Lagrangian functional M(v, l) if

M(v, l) ≤M(v, l) ≤M(v, l), ∀v ∈W, ∀l ∈ L2(ΓK).
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If (v, l) is a saddle point of M(v, l), then v is a solution of problem (3) and
l is a solution of dual problem

(10) M(l)− max
l∈L2(Γ)

,

and, moreover, if v ∈ H2(Ω), then l = σn(v) [11, 13].

Theorem 1. Let m ∈ L2(ΓK) does not belong to domχ. Then, for every

sequence {mi} ⊂ domχ such that lim
i→∞

‖mi − m‖L2(ΓK) = 0, it holds that

lim
i→∞

χ(mi) = +∞.

Proof. Take a function m that does not belong to domχ and consider an ar-
bitrary sequence {mi} ⊂ domχ such that lim

i→∞
‖mi −m‖L2(ΓK) = 0. We can

prove the existence of point vi = argmin
v∈Kmi

J(v) for i = 1, 2, . . . if condition (7)

is fulfilled. In fact, take an arbitrary v ∈W and set

v1 =
1

n1 mesΓK

∫

ΓK

vndΓ.

Consider the vector v = (v1, 0) ∈ R̃. Let ṽ = v− v = (v1 − v1, v2). We have
∫

ΓK

ṽndΓ =

∫

ΓK

(
(v1 − v1)n1 + v2n2

)
dΓ

=

∫

ΓK

(v1n1 + v2n2)dΓ−
1

mes ΓK

∫

ΓK

(∫

ΓK

vndΓ

)
dΓ = 0.

In this case, norm (6) of ṽ is
(∫

Ω

cijpmεij(ṽ)εpm(ṽ)dΩ

) 1

2

=

(
a(ṽ, ṽ)

) 1

2

.

On the space W , we define the linear functional

L1(v) =

∫

Ω

FividΩ+

∫

ΓP

TividΓ.

Then, for an arbitrary v ∈ Kmi it holds that

J(v) =
1

2
a(ṽ, ṽ)− L1(ṽ)− L1(v)(11)

=
1

2
a(ṽ, ṽ)− L1(ṽ)− v1

(∫

Ω

F1dΩ+

∫

ΓP

T1dΓ

)
.

Since
(12)

v1 =
1

n1 mes Γ

∫

ΓK

vndΓ ≤
1

n1 mes Γ

∫

ΓK

midΓ ≤
1

n1(mes Γ)
1

2

‖mi‖L2(ΓK),

condition (7) as applied to v ∈ Kmi implies that

J(v) −→ +∞ as ‖v‖[H1(Ω)]2 −→ ∞,
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that is vi exists.
We show that lim

i→∞
‖vi‖W = +∞. Assume the contrary, that is, there exists

a subsequence {vij} and a constant c > 0 such that ‖vij‖W ≤ C for all ij .

Since [H1(Ω)]2 ⊂ [H1/2(Γ)]2, we have ‖vij‖[H1/2(Γ)]2 ≤ C1, where c1 > 0

is a constant. Moreover, {vij} is a compact sequence in [L2(Γ)]
2. Let v̂ ∈

[H1/2(Γ)]2 be a weak limit point of this sequence. Without loss of generality,
we can assume that v̂ is a weak limit of {vij}. Then {vij} strongly (that is, in

the norm) converges to v̂ in [L2(Γ)]
2 and, hence, in [L2(ΓK)]2. Since v

ij
n ≤ mij ,

we have v̂n ≤ m on ΓK , which implies that Km 6= ∅. This contradiction proves
that lim

i→∞
‖vi‖W = +∞.

Since lim
i→∞

‖mi −m‖L2(ΓK) = 0, then it follows from (12), that

(13) vi1 ≤ c2, c2 > 0 — const, i = 1, 2, . . . .

Now, the condition lim
i→∞

‖vi‖W = +∞ and (11) imply that lim
i→∞

J(vi) = +∞

and lim
i→∞

χ(mi) = +∞. �

Theorem 2. Let m ∈ L2(ΓK) belongs to domχ. Then, for every sequence

{mi} ⊂ domχ converging to m in L2(ΓK), it holds that lim
i→∞

χ(mi) ≥ χ(m).

Proof. Let {mi} ⊂ domχ and lim
i→∞

‖mi −m‖L2(ΓK) = 0. From the sequence

{mi}, we extract a subsequence {mij} for which

lim
j→∞

χ(mij ) = lim
i→∞

χ(mi).

Consider the subsequence {vij}, where vij = argmin
v∈K

m
ij

J(v). We can suppose

that {vij} is a bounded sequence in [H1(Ω)]2 (otherwise, from (11), (13) it
follows, that lim

j→∞
χ(mij ) = +∞, and the theorem is proved). Since [H1(Ω)]2 ⊂

[H1/2(Γ)]2, then the sequence {vij} is also bounded in [H1/2(Γ)]. It follows
that {vij} is a weakly compact sequence in [H1/2(Γ)]2. Let v̂ be its weak
limit point. Without loss of generality, we can assume that {vij} is a weakly
converging sequence; that is, v̂ is a weak limit point of {vij} in [H1/2(Γ)]2. Since
[H1/2(Γ)] is compactly embedded in [L2(Γ)] and [L2(Γ)]

2 ⊂ [H−1/2(Γ)]2, then
{vij} converges to v̂ in [L2(Γ)]

2 and, hence, in [L2(ΓK)]2. We have mij −→ m

in L2(ΓK), vij −→ v̂ in [L2(ΓK)]2, and v
ij
n ≤ mij on ΓK . Then v̂n ≤ m on ΓK .

Let ̂̂v = argmin
v=v̂ on Γ

J(v). We have

J(vij )− J(̂̂v) = a(̂̂v, vij − ̂̂v)−
∫

Ω

Fs(v
ij
s − ̂̂vs)dΩ−

∫

ΓP

Ts(v
ij
s − ̂̂vs)dΓ

+
1

2
a(vij − ̂̂v, vij − ̂̂v)
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= 〈µ, vij − ̂̂v〉 −
∫

ΓP

Ts(v
ij
s − ̂̂vs)dΓ +

1

2
a(vij − ̂̂v, vij − ̂̂v),

where 〈µ, v〉 = a(̂̂v, v)−
∫
Ω
FsvsdΩ and µ ∈ [H− 1

2 (Γ)]2 [7, 9].

Since {vij} weakly converges to v̂ in [H1/2(Γ)]2, we have

lim
j→∞

〈µ, vij − ̂̂v〉 = 0.

From this relation and from the convergence of {vij} to v̂ in [L2(Γ)]
2, we

conclude that

lim
j→∞

χ(mij ) = lim
j→∞

J(vij ) ≥ J(̂̂v) ≥ χ(m)

or

lim
i→∞

χ(mij ) ≥ χ(m).
�

Theorems 1 and 2 imply that the functional χ(m) is lower semicontinuous on
L2(ΓK). Since χ(m) is convex functional, it is also weakly lower semicontinuous
on L2(ΓK).

For an arbitrary l ∈ L2(ΓK), we consider the functional

Fl(m) = χ(m) +

∫

ΓK

lmdΓ +
r

2

∫

ΓK

m2dΓ,

where r > 0 is a constant. Then the dual functional M(l) has the form

M(l) = inf
m∈L2(ΓK)

Fl(m).

For a fixed l ∈ L2(ΓK), we examined the functional Fl(m) for m ∈ L2(ΓK).

Theorem 3. The functional Fl(m) is coercive in L2(ΓK).

Proof. Since χ(m) is a lower semicontinuous functional, then the epigraph of
sensitivity functional

epiχ ≡ {(v, a) ∈ L2(ΓK)×R : χ(v) ≤ a}

is a convex closed set in L2(ΓK)×R. According Mazur separation theorem [4,
p. 164] there are ψ ∈ L2(ΓK) and d ∈ R, such that

∫

ΓK

ψmdΓ + χ(m) + d ≥ 0, ∀m ∈ domχ.

Hence Fl(m) −→ +∞ under ‖m‖L2(ΓK) −→ ∞. �

It is easy to see that Fl(m) is a weakly lower semicontinuous functional.
Then it follows from Theorem 3 that there is unique m(l) = argmin

m∈L2(ΓK)

Fl(m).

It is obvious that m(l) ∈ domχ. Let us introduce the function

Q(l) = χ(m(l)), ∀l ∈ L2(ΓK).

Theorem 4. The function Q(l) is continuous in L2(ΓK).
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Proof. For a given element l ∈ L2(ΓK), the inequality

χ(m(l)) +

∫

ΓK

lm(l)dΓ +
r

2

∫

ΓK

(m(l))2dΓ +
r

2
‖m(l)−m‖2L2(ΓK)

≤ χ(m) +

∫

ΓK

lmdΓ +
r

2

∫

ΓK

m2dΓ

is fulfilled for every m ∈ L2(ΓK).
Choose two elements l1, l2 on L2(ΓK). Let m1 = m(l1) and m2 = m(l2).

Last inequality implies the relations

χ(m1) +

∫

ΓK

l1m1dΓ +
r

2

∫

ΓK

m2
1dΓ +

r

2
‖m1 −m2‖

2
L2(ΓK)(14)

≤ χ(m2) +

∫

ΓK

l1m2dΓ +
r

2

∫

ΓK

m2
2dΓ,

χ(m2) +

∫

ΓK

l2m2dΓ +
r

2

∫

ΓK

m2
2dΓ +

r

2
‖m1 −m2‖

2
L2(ΓK)(15)

≤ χ(m1) +

∫

ΓK

l2m1dΓ +
r

2

∫

ΓK

m2
1dΓ.

Combining (14) and (15), we find that

(16) r‖m1 −m2‖
2
L2(ΓK) ≤

∫

ΓK

(l1 − l2)(m2 −m1)dΓ.

From (16), we derive

(17) ‖m1 −m2‖L2(ΓK) ≤
1

r
‖l1 − l2‖L2(ΓK).

Relations (14) and (15) also imply the two-sided inequality
∫

ΓK

l1(m1 −m2)dΓ +
r

2

∫

ΓK

(m2
1 −m2

2)dΓ ≤ χ(m2)− χ(m1)

≤

∫

ΓK

l2(m1 −m2)dΓ +
r

2

∫

ΓK

(m2
1 −m2

2)dΓ.

Let l2 approaches l1 in L2(ΓK). The above two-sided inequality and rela-
tion (17) lead to the equality lim

l2→l1
Q(l2) = Q(l1). �

From Theorem 4 and inequality (17) it follows that convex functional
(−M(l)) = − inf

m∈L2(ΓK)
Fl(m) is a continuous functional in L2(ΓK).

Consequently, its subdifferential is not empty for all l ∈ l2(ΓK), that is,
∂(−M(l)) 6= ∅ (see [2]).
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Theorem 5. The dual functional M(l) is Gáteaux differentiable in L2(ΓK)
and its derivative ∇M(l) satisfies the Lipschitz condition with the constant 1

r ,

that is, for all l1, l2 ∈ L2(ΓK), it holds that

‖∇M(l1)−∇M(l2)‖L2(ΓK) ≤
1

r
‖l1 − l2‖L2(ΓK).

Proof. Let l ∈ L2(ΓK) and −τ ∈ ∂(−M(l)). For an arbitrary ξ ∈ L2(ΓK), we
have

(18) M(ξ) ≤M(l) + 〈τ, ξ − l〉,

where 〈·, ·〉 is the scalar product in L2(ΓK).
Inequality (18) implies that

χ(m(ξ)) +

∫

ΓK

ξm(ξ)dΓ +
r

2

∫

ΓK

(m(ξ))2dΓ

≤ χ(m(l)) +

∫

ΓK

lm(l)dΓ+
r

2

∫

ΓK

(m(l))2dΓ + 〈τ, ξ − l〉

≤ χ(m(ξ)) +

∫

ΓK

lm(ξ)dΓ +
r

2

∫

ΓK

(m(ξ))2dΓ + 〈τ, ξ − l〉.

Hence ∫

ΓK

m(ξ)(ξ − l)dΓ ≤ 〈τ, ξ − l〉, ∀ξ ∈ L2(ΓK).

For arbitrary h ∈ L2(ΓK) and β > 0, we set ξ = l+ βh. Then
∫

ΓK

m(l + βh)hdΓ ≤ 〈τ, h〉, ∀h ∈ L2(ΓK).

Sending β to zero and using (17), we obtain

(19)

∫

ΓK

m(l)hdΓ = 〈τ, h〉, ∀h ∈ L2(ΓK).

In view of the uniqueness of m(l), we conclude that functional M(l) is
Gáteaux differentiable in L2(ΓK) and ∇M(l) = τ = m(l) (see [2]). Inequality
(17) completes the proof. �

Consider the dual problem

(20) M(l)− max
l∈L2(ΓK)

.

Assume that a solution u to problem (3) belongs to the class [H2(Ω)]2 and

mes Γ̃K > 0, where Γ̃K = {x ∈ ΓK : σn(u) < 0}. Then the vector function u

is the unique solution to problem (3), while the element −σn(u) is the unique
solution to the dual problem (20) (see [11]).

Since the gradient of the functional M(l) satisfies the Lipschitz condition,
the dual problem can be solved by using the gradient method for maximizing
a functional (see [6, 13])

(21) ls+1 = ls + rm(ls), s = 0, 1, 2, . . . ,
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where l0 ∈ L2(ΓK) is an arbitrary initial value,

m(ls) = ∇M(ls) = argmin
m∈L2(ΓK)

{
χ(m) +

∫

ΓK

lsmdΓ +
r

2

∫

ΓK

m2dΓ

}
,

and r is a constant.

Theorem 6. The mapping P (l) = l + rm(l) satisfies the following two condi-

tions (see [11, Theorem 4]) :

(1) P (−σn(u)) = −σn(u);
(2) ‖P (−σn(u))− P (l)‖L2(ΓK) < ‖ − σn(u)− l‖L2(ΓK), ∀l 6= −σn(u).

Theorem 7. The sequence {ls} constructed by the gradient method (21) sat-

isfies the limit equality lim
s→∞

‖m(ls)‖L2(Γ) = 0.

Proof. Since ∇M(l) satisfies the Lipschitz condition, the equality

M(l + h)−M(l) =

∫ 1

0

〈m(l + th), h〉dt

holds for all h ∈ L2(ΓK) (see [6]). By analog with [13, p. 31], this implies the
assertion of the theorem.

The gradient method (21) can be written as an algorithm for solving problem
(3) (see [11]):

(22)

(i) us+1 = argmin
v∈[H1(Ω)]2

{
J(v) +

1

2r

∫

ΓK

((
(ls + rvn)

+
)2

− (ls)2
)
dΓ

}
,

(ii) ls+1 = ls + rmax

{
− us+1

n ,−
ls

r

}
,

where l0 ∈ L2(ΓK).
Algorithm (22) converges with respect to the functional; that is,

lim
s→∞

J(us) = min
v∈K

J(v) = J(u).

As before, u is a solution to problem (3).
Indeed, from Theorem 6 it follows that

‖ − σn(u)− ls+1‖L2(ΓK) < ‖ − σn(u)− ls‖L2(ΓK).

It means that {ls} is a bounded sequence in L2(Γk). The functional χ(m) is
weakly lower semicontinuous on L2(ΓK), which yields

lim
s→∞

{
χ(m(ls)) +

∫

ΓK

lsm(ls)dΓ +
r

2

∫

ΓK

(
m(ls)

)2
dΓ

}

= lim
s→∞

χ(m(ls)) ≥ χ(0) = J(u).

On the other hand,

M(ls) = χ(m(ls)) +

∫

ΓK

lsm(ls)dΓ +
r

2

∫

ΓK

(
m(ls)

)2
dΓ



LAGRANGE MULTIPLIER METHOD 1205

= inf
m∈L2(ΓK)

{
χ(m) +

∫

ΓK

lsmdΓ +
r

2

∫

ΓK

m2dΓ

}
≤ χ(0), s = 0, 1, 2, . . . .

Therefore,

lim
s→∞

{
χ(m(ls)) +

∫

ΓK

lsm(ls)dΓ +
r

2

∫

ΓK

(
m(ls)

)2
dΓ

}
≤ χ(0).

Consequently, there exists the limit

lim
s→∞

{
χ(m(ls)) +

∫

ΓK

lsm(ls)dΓ +
r

2

∫

ΓK

(
m(ls)

)2
dΓ

}
= χ(0) = J(u).

Now, Theorem 7 implies that

lim
s→∞

J(us) = lim
s→∞

χ(m(ls)) = χ(0) = J(u).

The convergence of this algorithm with respect to the argument was exam-
ined in [10, 15]. �

3. Conclusion and discussion

The modified Lagrangian functional

M(v, l) = J(v) +
1

2r

∫

Γ

{(
(lk + rvn)

+
)2

− (lk)2
}
dΓ

is a convex with respect to v if l is fixed. But it is not strongly convex functional
with respect to v because of kernel R of bilinear form a(u, v) is not empty.
Therefore it is a problem to find point us+1 on step (i) of method (22). Consider
an iterative method for solving problem (3) based on combining the modified
Lagrangian functional with proximal regularization.

Choose an arbitrary initial point (u0, l0) ∈ W × H1/2(ΓK) and generated
a sequence {(us, ls)} as follows.

(j) At the (s+ 1)th iteration step (s = 0, 1, 2, . . . ), construct the functional

LS(v) =M(v, ls) +
1

2
‖v − us‖2[L2(Ω)]2 , ∀v ∈W,

and find a point us+1 ∈ W using the criterion

(23) ‖us+1 − us+1‖[H1(Ω)]2 ≤ σs,

where us+1 = argmin
v∈W

LS(v), σs > 0,
∑∞

k=1 σs <∞.

(jj) Modify the dual variable ls+1 according to the formula

(24) ls+1 = (ls + rus+1
n )+.

The regularizing addition 1
2‖v − us‖2[L2(Ω)]2 ensures the strong convexity of

the functional LS(v) under minimization. This guarantees that the auxiliary
problems

LS(v, l
s)− min

v∈W
,
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are uniquely solvable and efficient optimization methods can be used for solving
these problems.

Theorem 8. Let the modified Lagrangian functional M(v, l) has a nonempty

set of saddle points and, moreover, such conditions are fulfilled

(1) us ∈ [H2(Ω)]2,
(2) ‖us‖H2(Ω)]2 ≤ c, c > 0 – const.

Then, the sequence {(us, ls)} converges to a saddle point of M(v, l) in space

[H1(Ω)]2 × L2(ΓK)[13].

Algorithm (23), (24) was examined in detail with the help of finite element
method in [10, 16]. It is a very effective method for solving semicoercive vari-
ational inequalities in mechanics.
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