DOI QR코드

DOI QR Code

Structural Performance Investigation for the Reinforced Concrete Frames Deteriorated by the Reinforcement Corrosion

철근부식에 의한 철근콘크리트골조의 구조성능분석

  • Choi, Se-Woon (Department of Architecture, Catholic University of Daegu)
  • 최세운 (대구가톨릭대학교 건축학부)
  • Received : 2015.08.24
  • Accepted : 2015.09.13
  • Published : 2015.10.30

Abstract

The existing research on the damage detection method for building structures has considered the damages from the excessive loadings such as the earthquake. However, the structural performance of building structures could be reduced due to the deterioration based on the chloride, carbonation during the long-term time. Thus, to effectively manage the healthiness of structures, the deterioration influences on the structures should be checked. In this study, the corrosion of rebars by the chloride is considered as the deterioration factor. To consider the structural performance reduction of the corroded rebars, the yield strength, cross-sectional area, rupture strain of rebars and the compressive strength of cover concrete based on the corrosion level are estimated. These properties of rebars and cover concrete are used for the procedure to evaluate the structural performance reduction of structural member level and the building level. The moment-curvature analysis is performed to evaluate the structural performance reduction of structural member level. Also, the eigenvalue analysis and the pushover analysis are performed to investigate the natural period and mode shape and the strength and deformation performance of buildings, respectively.

기존 구조물의 손상평가에 관한 연구는 지진 등과 같은 과도한 하중에 의한 손상을 고려하였다. 그러나 구조물은 과도한 하중없이도 장기간의 시간에 따라 염화물, 탄성화 등과 같은 이유로 노후화가 진행되어 구조성능이 저하될 수 있다. 그래서 구조물의 건전도를 효과적으로 관리하기 위해서는 노후화에 의한 구조성능 저하도 검토되어야 한다. 본 연구에서는 염화물에 의한 철근의 부식을 노후화 요인으로 고려한다. 철근부식에 의한 재료의 구조성능 저하를 고려하기 위해 부식정도에 따른 철근의 단면적, 항복강도, 파단변형률, 피복 콘크리트 강도 등을 예측한다. 이를 구조모델링에 적용하여 구조부재 및 구조물의 구조성능 저하를 분석한다. 구조부재의 구조성능을 분석하기 위해 모멘트-곡률 해석을 수행한다. 구조물 레벨의 구조성능을 고려하기 위해, 고유치해석을 통한 고유주기와 모드형상을 분석한다. 또한 비선형 정적해석을 통해 구조물의 강도와 변형성능을 분석한다.

Keywords

References

  1. Brownjohn, J.M.W., Stefano, A.D., Xu, Y.L., Wenzel, H., Aktan, A.E. (2011) Vibration-based Monitoring of Civil Infrastructure: Challenges and Successes, J. Civil Struct. Health Monit., 1(1-3), pp.79-95. https://doi.org/10.1007/s13349-011-0009-5
  2. Carden, E., Fanning, P. (2004) Vibration Based Condition Monitoring: A Review, Struct. Health Monit., 3(4), pp.355-377. https://doi.org/10.1177/1475921704047500
  3. Chiu, C.K., Chi, K.N. (2013) Analysis of Lifetime Losses of Low-rise Reinforced Concrete Buildings Attacked by Corrosion and Earthquakes using A Novel Method, Struct. & Infrastruct. Eng., 9(12), pp.1225-1239. https://doi.org/10.1080/15732479.2012.681790
  4. Choi, S.W., Park, K., Kim, Y., Park, H.S. (2013) A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors, J. Comput. Struct. Eng. Ist. Korea, 26(4), pp.263-269. https://doi.org/10.7734/COSEIK.2013.26.4.263
  5. Enright, M.P., Frangopol, D.M. (1998) Probabilistic Analysis of Resistance Degradation of Reinforced Concrete Bridge Beams under Corrosion, Eng. Struct., 20(11), pp.960-971. https://doi.org/10.1016/S0141-0296(97)00190-9
  6. Gangone, M.V., Whelan, M.J., Janoyan, K.D. (2011) Wireless Monitoring of a Multispan Bridge Superstructure for Diagnostic Load Testing and System Identification, Computer-Aided Civil & Infrastruct. Eng., 26(7), pp.560-579. https://doi.org/10.1111/j.1467-8667.2010.00711.x
  7. Ghosh, J., Padgett, J.E. (2010) Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves, J. Struct. Eng., 136(12), pp.1497-1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260
  8. Ghobarah, A., Aziz, T., Abou-Elfath, H. (1999) Softening Effects on The Seismic Response of Non-Ductile Concrete Frames, J. Earthq. Eng., 3(1), pp.59-81. https://doi.org/10.1080/13632469909350340
  9. Hong, D.S., Kim, J.T. (2012) Vibration-based Damage Monitoring Scheme of Steel Girder Bolt- Connection Member by using Wireless Acceleration Sensor Node, J. Comput. Struct. Eng. Inst. Korea, 25(1), pp.81-89. https://doi.org/10.7734/COSEIK.2012.25.1.081
  10. Hong, S.U., Cho, Y.S. (2007) A Study of the Structural Internal Assessment of Concrete Slab Using the Ground Penetrating Radar Exploration, J. Archit. Inst. Korea (Structural Division), 23(10), pp.51-58.
  11. Hou, Z., Noori, M., Amand R.St. (2000) Wavelet-Based Approach for Structural Damage Detection, J. Eng. Mech., 126(7), pp.677-683. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)
  12. Joh, S.H., Lim, Y.C., Ismail, M., Lee, H.S. (2010) Fundamental Study on Developing Embedded Mini-Sensor for Nondestructive Diagnosis Corrosion of Rebar, J. Korea Inst. Struct. Maint. & Insp., 14(6), pp.179-187.
  13. Kim, H.K., Hong, Y.K., Hong, G.S. (2004) Time Dependent Reliability-Based Assessment for the Reinforced Concrete Beams Using the Resistance Degradation Model, J. Archit. Inst. Korea (Structural Division), 20(2), pp.23-30.
  14. Kim, J., Lynch, J.P. (2012) Subspace System Identification of Support Excited Structures-Part II: Gray-Box Interpretations and Damage Detection, Earthq. Eng. & Struct. Dyn., 41(15), pp.2253-2271. https://doi.org/10.1002/eqe.2185
  15. Kim, J.Y., Yu, E., Kim, D.Y., Kim, S.D. (2009) Calibration of Analytical Models to Assess Windinduced Acceleration Responses of Tall Buildings in Serviceability Level, Eng. Struct., 31(9), pp.2086-2096. https://doi.org/10.1016/j.engstruct.2009.03.010
  16. Lee, H.S., Cho, Y.S. (2009) Evaluation of the Mechanical Properties of Steel Reinforcement Embedded in Concrete Specimen as a Function of the Degree of Reinforcement Corrosion, Int. J. Fract, 157, pp.81-88. https://doi.org/10.1007/s10704-009-9334-7
  17. Lim, Y.C., Noguchi, T., Shin, S.W. (2010) Corrosion Evaluation by Estimating the Surface Resistivity of Reinforcing Bar, J. Advan. Concr. Tech., 8(2), pp.113-119. https://doi.org/10.3151/jact.8.113
  18. Mazzoni, S., Mckenna, F., Fenves, G.L. (2006) OpenSees Command Language Manual, (http://opensees.berkeley.edu/index.php)
  19. Oh, B.K., Choi, S.W., Kim, Y., Cho, T.J., Park, H.S. (2014) An Analytical Study on System Identification of Steel Beam Structure for Buildings based on Modified Genetic Algorithm, J. Comput. Struct. Eng. Inst. Koera, 27(4), pp.231-238. https://doi.org/10.7734/COSEIK.2014.27.4.231
  20. Ou, Y.C., Tsai, L.L., Chen H.H. (2012) Cyclic Performance of Large-Scale Corroded Reinforced Concrete Beams, Earthq. Eng. & Struct. Dyn., 41, pp.593-604. https://doi.org/10.1002/eqe.1145
  21. Park, J., Choun, Y.S., Choi, I.K. (2011) Sensitivity Analysis of Parameters Affecting Seismic Response for RC Shear Wall with Age-Related Degradation, J. Comput. Struct. Eng. Inst. Korea, 24(4), pp.391-398.
  22. Park, R., Park, T. Reinforced Concrete Structures, Wiley, 1975.
  23. Park, S.W., Park, H.S., Kim, J.H., Adeli, H. (2015) 3D Displacement Measurement Model for Health Monitoring of Structures using a Motion Capture System, Measurement, 59, pp.352-362. https://doi.org/10.1016/j.measurement.2014.09.063
  24. Pitilakis, K.D., Karapetrou, S.T., Fotopoulou, S.D. (2014) Consideration of Aging and SSI Effects on Seismic Vulnerability Assessment of RC Buildings, Bull. Earthq. Eng., 12(4), pp.1755-1776. https://doi.org/10.1007/s10518-013-9575-8
  25. Shiradhonkar, S.R., Shrikhande, M. (2011) Seismic Damage Detection in A Building Frame Via Finite Element Model Updating, Comput. & Struct., 89, pp.2425-2438.
  26. Stewart, M.G. (2004) Spatial Variability of Pitting Corrosion and Its Influence on Structural Fragility and Reliability of RC Beams in Flexure, Struct. Saf., 26, pp.453-470. https://doi.org/10.1016/j.strusafe.2004.03.002