DOI QR코드

DOI QR Code

지수 및 멱 법칙 점진기능재료 판의 3차원 자유진동해석

3-D Free Vibration Analysis of Exponential and Power-law Functionally Graded Material(FGM) Plates

  • 이원홍 (경남과학기술대학교 토목공학과) ;
  • 한성천 (대원대학교 철도건설과) ;
  • 안진희 (경남과학기술대학교 토목공학과) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Lee, Won-Hong (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Ahn, Jin-Hee (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Park, Weon-Tae (Division of Construction and Environmental Engineering Kongju National University)
  • 투고 : 2015.08.20
  • 심사 : 2015.09.14
  • 발행 : 2015.10.30

초록

지수 함수 및 멱 법칙 함수를 이용한 점진기능재료(FGM) 판의 전단 및 두께 방향 변형을 고려한 이론을 정식화하여 동적 평형방정식을 유도하였다. 지수 함수 및 멱 법칙 함수는 두께 방향으로 재료의 변화를 고려할 수 있고 3차원 해석방법은 전단 및 두께 방향 변형을 고려함으로써 점진기능재료의 정확한 구조적 특성을 고려할 수 있다. Pasternak탄성지반 위에 놓인 4변이 단순 지지되고 전단 및 두께 방향 변형이 고려된 점진기능재료 판의 지배방정식을 풀기 위해 Navier 방법을 사용하였다. 거듭제곱 지수와 3차원 해석의 효과를 나타내기 위한 지수 및 멱 법칙 점진기능재료 판의 동적 해석결과를 제시하였다. 기존의 2차원 고차전단변형 이론 및 3차원 이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 거듭제곱 지수, (ii) 폭-두께 비, 그리고 (iii) 탄성지반 계수, 등이 점진기능재료 판의 자유진동수에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였다.

The exponential and power law functionally graded material(FGM) theory is reformulated considering the refined shear and normal deformation theory. This theory has ability to capture the both normal deformation effect and exponential and power law function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported plates on Pasternak elastic foundation. Numerical solutions of vibration analysis of FGM plates are presented using this theory to illustrate the effects of power law index and 3-D theory of exponential and power law function on natural frequency. The relations between 3-D and 2-D higher-order shear deformation theory are discussed by numerical results. Further, effects of (i) power law index, (ii) side-to-thickness ratio, and (iii) elastic foundation parameter on nondimensional natural frequency are studied. To validate the present solutions, the reference solutions are discussed.

키워드

참고문헌

  1. Aydogdu, M. (2009) A New Shear Deformation Theory for Laminated Composite Plates, Compos. Struct., 89, pp.94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  2. Bao, G., Wang, L. (1995) Multiple Cracking in Functionally Graded Ceramic/Metal Coatings, Int. J. Solids Struct., 32, pp.2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
  3. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R., Beg, O.A. (2014) An Efficient and Simple Higher Order Shear and Normal Deformation Theory for Functionally Graded Material (FGM) Plates, Compos. Part B: Eng., 60, pp.274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  4. Benachour, A., Daouadji, T.H., Ait Atmanea, H., Tounsi, A., Ahmed, M.S. (2011) A Four Variable Refined Plate Theory for Free Vibrations of Functionally Graded Plates with Arbitrary Gradient, Compos. Part B: Eng., 42, pp.1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  5. Bourada, M., Tounsi, A., Houari, M.S.A. (2012) A New Four-variable Refined Plate Theory for Thermal Buckling Analysis of Functionally Graded Sandwich Plates, J. Sandwich Struct. & Mater., 14, pp.5-33. https://doi.org/10.1177/1099636211426386
  6. Carrera, E., Brischetto, S., Cinefra, M., Soave, M. (2011) Effects of Thickness Stretching in Functionally Graded Plates and Shells, Compos. Part B: Eng., 42, pp.123-133.
  7. Delale, F., Erdogan, F. (1983) The Crack Problem for a Nonhomogeneous Plane, J. Appl. Mech. (ASME), 50, pp.609-614. https://doi.org/10.1115/1.3167098
  8. Han, S.C., Park, W.T., Jung, W.Y. (2015) A Four-variable Refined Plate Theory for Dynamic Stability Analysis of S-FGM Plates based on Physical Neutral Surface, Compos. Struct., 131, pp.1081-1089. https://doi.org/10.1016/j.compstruct.2015.06.025
  9. Hirano, T., Yamada, T. (1988) Multi-paradigm Expert System Architecture based upon the Inverse Design Concept, International Workshop on Artificial Intelligence for Industrial Applications, Hitachi, Japan.
  10. Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R. (2011a) Study on the Free Vibration of Thick Functionally Graded Rectangular Plates according to a New Exact Closed-form Procedure, Compos. Struct., 93, pp.722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
  11. Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R. (2011b) A New Exact Analytical Approach for Free Vibration of Reissner-Mindlin Functionally Graded Rectangular Plates, Int. J. Mech. Sci., 53, pp.11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
  12. Jung, W.Y., Han, S.C. (2014) Transient Analysis of FGM and Laminated Composite Structures using a Refined 8-node ANS Shell Element, Compos.: Part B, 56, pp.372-383. https://doi.org/10.1016/j.compositesb.2013.08.044
  13. Jung, W.Y., Han, S.C. (2015) Static and Eigenvalue Problems of Sigmoid Functionally Graded Materials (S-FGM) Micro-scale Plates using the Modified Couple Stress Theory, Appl. Math. Model., 39, pp.3506-3524. https://doi.org/10.1016/j.apm.2014.11.056
  14. Karama, M., Afaq, K.S., Mistou, S. (2003) Mechanical Behaviour of Laminated Composite Beam by the New Multi-layered Laminated Composite Structures Model with Transverse Shear Stress Continuity, Int. J. Solids & Struct., 40, pp.1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  15. Lee, W.H., Han, S.C., Park, W.T. (2008) Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates, J. Korea Academic-Industrial coop. Soc., 9(4), pp.1043-1049. https://doi.org/10.5762/KAIS.2008.9.4.1043
  16. Lee, W.H., Han, S.C., Park, W.T. (2015) A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Elastic Foundation, J. Comput. Struct. Eng. Inst.Korea, 28(1), pp.85-92. https://doi.org/10.7734/COSEIK.2015.28.1.85
  17. Lu, C.F., Lim, C.W., Chen, W.Q. (2009) Exact Solutions for Free Vibrations of Functionally Graded Thick Plates on Elastic Foundations, Mech. Adv. Mater. & Struct., 16, pp.576-584. https://doi.org/10.1080/15376490903138888
  18. Malekzadeh, P., Monajjemzadeh, S.M. (2013) Dynamic Response of Functionally Graded Plates in Thermal Environment under Moving Load, Compos. Part B: Eng., 45, pp.1521-1533. https://doi.org/10.1016/j.compositesb.2012.09.022
  19. Malekzadeh, P., Shojaee, M. (2013) Free Vibration of Nanoplates based on a Nonlocal Two-variable Refined Plate Theory, Compos. Struct., 95, pp.443-452. https://doi.org/10.1016/j.compstruct.2012.07.006
  20. Mantari, J.L., Guedes Soares, C. (2014) Optimized Sinusoidal Higher Order Shear Deformation Theory for the Analysis of Functionally Graded Plates and Shells, Compos. Part B: Eng., 56, pp.126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
  21. Matsunaga, H. (2008) Free Vibration and Stability of Functionally Graded Plates according to a 2-D Higher-order Deformation Theory, Compos. Struct., 82, pp.499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  22. Mechab, I., Mechab, B., Benaissa, S. (2013) Static and Dynamic Analysis of Functionally Graded Plates using Four-variable Refined Plate Theory by the New Function, Compos. Part B: Eng., 45, 748-757. https://doi.org/10.1016/j.compositesb.2012.07.015
  23. Reddy, J.N. (2000) Analysis of Functionally Graded Plates, Int. J. Numer. Methods Eng., 47, pp.663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  24. Reddy, J.N. (2007) Theory and Analysis of Elastic Plates and Shells, CRC Press, London.
  25. Senthilnathan, N.R., Chow, S.T., Lee, K.H., Lim, S.P. (1987) Buckling of Shear-deformable Plates, AIAA J., 25, pp.1268-1271. https://doi.org/10.2514/3.48742
  26. Shimpi, R.P., Patel, H.G. (2006a) Free Vibrations of Plate using Two Variable Refined Plate Theory, J. Sound & Vib., 296, pp.979-999. https://doi.org/10.1016/j.jsv.2006.03.030
  27. Shimpi, R.P., Patel, H.G. (2006b) A Two Variable Refined Plate Theory for Orthotropic Plate Analysis, Int. J. Solids & Struct., 43, pp.6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  28. Thai, H.T., Kim, S.E. (2010) Free Vibration of Laminated Composite Plates using Two Variable Refined Plate Theory, Int. J. Mech. Sci., 52, pp.626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002
  29. Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. (2013) Isogeometric Analysis of Functionally Graded Plates using Higher-order Shear Deformation Theory, Compos. Part B: Eng., 51, pp.368-383. https://doi.org/10.1016/j.compositesb.2013.02.045
  30. Zenkour, A.M. (2006) Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Plates, Appl. Math. Model., 30, pp.67-84. https://doi.org/10.1016/j.apm.2005.03.009