Abstract
In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.
본 논문에서는 커코프 판이론과 폰-칼만 비선형 변형율-변위 관계를 이용하여 서형화된 좌굴해석을 수행하였다. 평면응력과 좌굴문제에서 영률과 두께에 관한 설계민감도식을 유도하였고, 고유치를 최대화하면서 컴플라이언스를 최소화하는 위상최적설계 기법을 정식화하였다. 좌굴해석에서의 프리스트레스를 이용하여 판 좌굴문제에 적용할 수 있는 위상최적설계 기법을 개발하였다. 폰-칼만 비선형 변형률을 사용하여 좌굴문제의 응력행렬을 구성하는데 프리스트레스가 필요하므로 면외로의 운동을 도입하였다. 위상최적설계를 위하여 정규재료밀도를 설계변수로 하고, 목적함수는 최소 컴플라이언스와 최대 고유진동수로 하였으며 제한조건은 허용되는 재료량이다. 여러 수치예제를 통하여 개발된 설계민감도 해석법은 유한차분 민감도와 비교하여 매우 정확한 값을 가지고, 위상최적설계는 물리적으로 의미있는 결과를 제공함을 확인하였다.