DOI QR코드

DOI QR Code

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance

좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화

  • Lee, Seung-Wook (National Creative Research Initiatives(NCRI) Center for Isogeometric Optimal Design Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Ahn, Seung-Ho (National Creative Research Initiatives(NCRI) Center for Isogeometric Optimal Design Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Cho, Seonho (National Creative Research Initiatives(NCRI) Center for Isogeometric Optimal Design Department of Naval Architecture and Ocean Engineering, Seoul National University)
  • 이승욱 (서울대학교 아이소-지오메트릭 최적설계 창의연구단 및 조선해양공학과) ;
  • 안승호 (서울대학교 아이소-지오메트릭 최적설계 창의연구단 및 조선해양공학과) ;
  • 조선호 (서울대학교 아이소-지오메트릭 최적설계 창의연구단 및 조선해양공학과)
  • Received : 2014.06.26
  • Accepted : 2015.06.19
  • Published : 2015.10.30

Abstract

In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

본 논문에서는 커코프 판이론과 폰-칼만 비선형 변형율-변위 관계를 이용하여 서형화된 좌굴해석을 수행하였다. 평면응력과 좌굴문제에서 영률과 두께에 관한 설계민감도식을 유도하였고, 고유치를 최대화하면서 컴플라이언스를 최소화하는 위상최적설계 기법을 정식화하였다. 좌굴해석에서의 프리스트레스를 이용하여 판 좌굴문제에 적용할 수 있는 위상최적설계 기법을 개발하였다. 폰-칼만 비선형 변형률을 사용하여 좌굴문제의 응력행렬을 구성하는데 프리스트레스가 필요하므로 면외로의 운동을 도입하였다. 위상최적설계를 위하여 정규재료밀도를 설계변수로 하고, 목적함수는 최소 컴플라이언스와 최대 고유진동수로 하였으며 제한조건은 허용되는 재료량이다. 여러 수치예제를 통하여 개발된 설계민감도 해석법은 유한차분 민감도와 비교하여 매우 정확한 값을 가지고, 위상최적설계는 물리적으로 의미있는 결과를 제공함을 확인하였다.

Keywords

References

  1. Bendsoe, M.P., Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design using a Homogenization Method, Comput. Methods Appl. Mech. & Eng., 71(2), pp.197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  2. Cook, R.D., Malkus, D.S., Plesha, M.E. (1989) Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc. p.784.
  3. Haug, E.J., Choi, K.K., Komkov, V. (1986) Design Sensitivity Analysis of Structural System, Academic Press : New York, NY, p.38.
  4. Ha, Y.D., Kwak, J.H., Cho, S. (2002) Topology Optimization of Structural Frame in Human Powered Vessel, Proceeding of the Annual Autumn Meeting-SNAK.
  5. Irving, H.S., Dym, C.L. (1985) Energy and Finite Element Method in Structural Mechanics, Hemisphere Publishing Company, p.776.
  6. Jung, H.S. (2003) Design Sensitivity Analysis and Topology Optimization of Displacement-loaded Nonlinear Structures, Comput. Methods in Appl. Mech. & Eng., pp.2539-2553.
  7. Kim, M.G., Kim, J.H., Cho, S. (2010) Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method, J. Comput. Struct. Eng. Inst. Korea, 23(6), pp.683-691.
  8. Malvern, L.E. (1969) Introduction to The Mechanics of a Continuous Medium, Prentice Hall Inc., New Jersey. p.711.
  9. Reddy, J.N. (1993) An Introduction to The Finite Element Method, Mcgraw-Hill Book Company, p.896.
  10. Timoshenko, S.P., Gere, J.M. (1961) Theory of Elastic Stability, Mcgraw-Hill Book Company, p.541.
  11. Timoshenko, S.P., Woinowsky, K.S. (1987) Theory of Plates and Shells, Mcgraw-Hill Book Company, p.580.
  12. Zienkiewiez, O.C., Taylor, R.L. (1988) The finite Element Method, Mcgraw-Hill Book Company, p.732.