Commun. Korean Math. Soc. **30** (2015), No. 4, pp. 493–504 http://dx.doi.org/10.4134/CKMS.2015.30.4.493

WEAK AND STRONG FORMS OF *sT*-CONTINUOUS FUNCTIONS

Ahmad Al-Omari, Takashi Noiri, and Mohd. Salmi Md. Noorani

ABSTRACT. The aim of this paper is to present some properties of sT-continuous functions. Moreover, we obtain a characterization and preserving theorems of semi-compact, S-closed and s-closed spaces.

1. Introduction

The study of semi-open sets and semi-continuity in topological spaces was initiated by Levine [10]. In 2009, Noiri et al. [13] defined the notion T-open sets and deduced some results. Quite recently, Al-omari et al. [1] have obtained some properties of T-open sets and characterizations of S-closed spaces. In this paper, we present some properties of sT-continuous functions. Moreover, we obtain characterizations and preserving theorems of semi-compact, S-closed and s-closed spaces.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces on which no separation axiom is assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a space and S a subset of X. A subset S of X is said to be semi-open [10] if there exists an open set U of X such that $U \subseteq S \subseteq Cl(U)$, or equivalently if $S \subseteq Cl(Int(S))$. The complement of a semi-open set is said to be semi-closed. The intersection of all semi-closed sets containing S is called the semi-closure of S and is denoted by sCl(S). The semi-interior of S, denoted by sInt(S), is defined by the union of all semi-open sets contained in S. It is verified in [2] that $sCl(A) = A \cup Int(Cl(A))$ and $sInt(A) = A \cap Cl(Int(A))$ for any subset $A \subseteq X$. A point $x \in X$ is said to be in the θ -semiclosure of A, denoted by $x \in \theta$ -sCl(A), if $A \cap Cl(V) \neq \phi$ for each semi-open set V containing x. A subset $A \subseteq X$ is said to be θ -semiclosed [8] if $A = \theta$ -sCl(A). The complement of a θ -semiclosed set is called a θ -semiclosed

 $\odot 2015$ Korean Mathematical Society

Received January 25, 2015.

²⁰¹⁰ Mathematics Subject Classification. 54C05, 54C08, 54C10.

Key words and phrases. semi-open set, T-open set, S-closed space.

set. The family of all semi-open sets of X is denoted by SO(X). Moreover, for each $x \in X$ the family $\{U \in SO(X) : x \in U\}$ is denoted by SO(X, x).

3. Weakly-sT-continuous functions

In this section, we obtain properties of weakly-sT-continuous functions.

Definition 3.1. A subset A of a space X is said to be T-open [13] if for every $x \in A$, there exists a semi-open subset $U_x \subseteq X$ containing x such that $U_x - A$ is finite. The complement of a T-open subset is said to be T-closed.

The family of all T-open (resp. regular closed) subsets of a space (X, τ) is denoted by TO(X) (resp. RC(X)). The intersection of all T-closed sets of X containing A is called the T-closure of A and is denoted by tCl(A). And the union of all T-open sets of X contained in A is called the T-interior and is denoted by tInt(A).

Definition 3.2 ([7]). A function $f: X \to Y$ is said to be weakly θ -irresolute if for each $x \in X$ and each semi-open set V of Y containing f(x), there exists $U \in SO(X, x)$ such that $f(U) \subseteq Cl(V)$.

Definition 3.3 ([13]). A function $f : X \to Y$ is said to be weakly-sTcontinuous if for each $x \in X$ and each semi-open set V of Y containing f(x),
there exists $U \in TO(X, x)$ such that $f(U) \subseteq Cl(V)$.

Lemma 3.4 ([7]). Let A be a subset of (X, τ) . Then A is θ -semiclosed (resp. θ -semiopen) if and only if A is the intersection (resp. union) of a family of regular open (resp. regular closed) sets. In particular, any regular open (resp. regular closed) set is θ -semiclosed (resp. θ -semiopen).

Theorem 3.5. The following are equivalent for a function $f : X \to Y$:

- (1) f is weakly-sT-continuous;
- (2) $f^{-1}(V) \subseteq tInt(f^{-1}(Cl(V)))$ for every $V \in SO(Y)$;
- (3) the inverse image of a regular closed set of Y is T-open;
- (4) the inverse image of a regular open set of Y is T-closed;
- (5) the inverse image of a θ -semi-open set of Y is T-open;
- (6) the inverse image of a θ -semi-closed set of Y is T-closed.

Proof. (1) \Rightarrow (2): Let $V \in SO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$. Since f is weakly-*sT*-continuous, there exists a *T*-open set U in X containing x such that $f(U) \subseteq Cl(V)$. It follows that $x \in U \subseteq f^{-1}(Cl(V))$. Hence $x \in tInt(f^{-1}(Cl(V)))$. We have $f^{-1}(V) \subseteq tInt(f^{-1}(Cl(V)))$.

 $(2) \Rightarrow (3)$: Let F be any regular closed set of Y. Since $F \in SO(Y)$, then by (2) it follows that $f^{-1}(F) \subseteq tInt(f^{-1}(Cl(F))) = tInt(f^{-1}(F))$. This shows that $f^{-1}(F)$ is T-open in X.

 $(3) \Rightarrow (4)$: Let A be any regular open set of Y. Since Y - A is regular closed, by (3) it follows that $f^{-1}(Y - A)$ is T-open and hence $f^{-1}(A)$ is T-closed in X.

(4) \Rightarrow (5): This follows from the fact any θ -semi-open set is a union of regular closed sets.

(5) \Rightarrow (6): Let A be any θ -semi-closed set of Y. Since Y - A is θ -semi-open, by (5) it follows that $f^{-1}(Y - A)$ is T-open and hence $f^{-1}(A)$ is T-closed in X.

 $(6) \Rightarrow (1)$: Let $x \in X$ and $V \in SO(Y, f(x))$. Then Y - Cl(V) is θ -semi-closed in Y. Set $X - U = f^{-1}(Y - Cl(V))$, then U is T-open and $f(U) \subseteq Cl(V)$. Therefore f is weakly-sT-continuous.

Recall that a space (X, τ) is said to be *s*-Urysohn [7] (resp. $t-T_2$) if for each pair x, y of distinct points in X, there exist $U, V \in SO(X)$ (resp. $U, V \in TO(X)$) such that $x \in U, y \in V$ and $Cl(U) \cap Cl(V) = \phi$ (resp. $U \cap V = \phi$).

Proposition 3.6. If (Y, σ) is s-Urysohn and $f : (X, \tau) \to (Y, \sigma)$ is a weaklysT-continuous injection, then (X, τ) is t-T₂.

Proof. Let $x, y \in X$ and $x \neq y$. Then there exist $U, V \in SO(Y)$ such that $f(x) \in U$, $f(y) \in V$ and $Cl(U) \cap Cl(V) = \phi$. Since $Cl(U), Cl(V) \in RC(Y)$, by Theorem 3.5 $f^{-1}(Cl(U))$ and $f^{-1}(Cl(V))$ are disjoint *T*-open sets containing x and y, respectively.

Definition 3.7. A topological space X is said to be S-closed [16] if for every semi-open cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of X there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $X = \bigcup \{Cl(U_{\alpha}) : \alpha \in \Lambda_0\}$.

Recall that a space (X, τ) is said to be almost regular [14] if for each $F \in RC(X)$ and each point $x \notin F$, there exist $U, V \in \tau$ such that $x \in U, F \subseteq V$ and $U \cap V = \phi$. Cameron [3] has showed that (X, τ) is S-closed if and only if every cover of (X, τ) consisting of regular closed sets contains a finite subcover.

Corollary 3.8 ([1]). For any space X, the following properties are equivalent:

- (1) X is S-closed;
- (2) For each T-open cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of X, there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $X = \bigcup \{Cl(U_{\alpha}) : \alpha \in \Lambda_0\}.$

Proposition 3.9 ([1]). If a topological space X is a T_1 -space, then every nonempty T-open set contains a nonempty semi-open set.

Lemma 3.10 ([11]). If A is a non-empty semi-open set, then $Int(A) \neq \phi$.

Theorem 3.11. Let $f : (X, \tau) \to (Y, \sigma)$ be a weakly-sT-continuous surjection and let (Y, σ) be almost regular and X a T_1 -space. If (X, τ) is S-closed, then (Y, σ) is S-closed.

Proof. Let $\{F_i : i \in I\}$ be a cover of (Y, σ) , where $F_i \in RC(Y)$ for each $i \in I$. Then $\{f^{-1}(F_i) : i \in I\}$ is a T-open cover of (X, τ) . By Corollary 3.8, there exists a finite subset $I_0 \subseteq I$ such that $X = \bigcup \{Cl(f^{-1}(F_i)) : i \in I_0\}$. We claim that $Y = \bigcup \{F_i : i \in I_0\}$. Suppose there exists $y \in Y - \bigcup \{F_i : i \in I_0\}$. Since (Y, σ) be almost regular and $\bigcup \{F_i : i \in I_0\} \in RC(Y)$, there exist $V, W \in \sigma$ with $y \in V$, $\bigcup \{F_i : i \in I_0\} \subseteq W$ and $V \cap W = \phi$. Hence $Cl(V) \cap W = \phi$ and $f^{-1}(Cl(V))$ is nonempty and *T*-open. Since *X* is *T*₁-space, every nonempty *T*-open set contains a nonempty open set by Proposition 3.9 and Lemma 3.10. This is contrary to the fact that $\bigcup \{f^{-1}(F_i) : i \in I_0\}$ is dense in (X, τ) . Thus $Y = \bigcup \{F_i : i \in I_0\}$.

Proposition 3.12. If $f, g : X \to Y$ are weakly-sT-continuous, X is an extremally disconnected space and Y is s-Urysohn, then $E = \{x \in X : f(x) = g(x)\}$ is T-closed in X.

Proof. If $x \in X - E$, then it follows that $f(x) \neq g(x)$. Since Y is s-Urysohn, there exist $V \in SO(Y, f(x))$ and $W \in SO(Y, g(x))$ such that $Cl(V) \cap Cl(W) = \phi$. Since f and g are weakly-sT-continuous, there exist $U \in TO(X, x)$ and $G \in TO(X, x)$ such that $f(U) \subseteq Cl(V)$ and $g(G) \subseteq Cl(W)$. Set $D = U \cap G$. Then D is T-open in X [1, Theorem 2.8] since X is extremally disconnected. Therefore $D \cap E = \phi$ and $D \cap tCl(E) = \phi$. It follows $tCl(E) \subseteq E$. This shows that E is T-closed in X.

Proposition 3.13. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for every $x \in X$. If g is weakly-sT-continuous, then f is weakly-sT-continuous.

Proof. Let $F \in RC(Y)$. Then $X \times F = X \times Cl(Int(F)) = Cl(Int(X)) \times Cl(Int(F)) = Cl(Int(X \times F))$. Therefore $X \times F \in RC(X \times Y)$. It follows from Theorem 3.5 that $f^{-1}(F) = g^{-1}(X \times F)$ is *T*-open in *X*. Thus, *f* is weakly-*sT*-continuous. □

Definition 3.14 ([5]). A function $f : X \to Y$ is said to be irresolute if $f^{-1}(V)$ is semi-open in X for each semi-open set V in Y.

Proposition 3.15 ([13]). If $f : X \to Y$ is irresolute injective and A is T-open in Y, then $f^{-1}(A)$ is T-open in X.

Definition 3.16 ([9]). A function $f : X \to Y$ is said to be θ -irresolute if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists $U \in SO(X, x)$ such that $f(Cl(U)) \subseteq Cl(V)$.

Proposition 3.17. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then the following hold:

- (1) If f is irresolute and g is weakly-sT-continuous, then $g \circ f : X \to Z$ is weakly-sT-continuous.
- (2) If f is weakly-sT-continuous and g is θ -irresolute, then $g \circ f : X \to Z$ is weakly-sT-continuous.

Proof. (1) Let $x \in X$ and W be a semi-open set in Z containing $(g \circ f)(x)$. Since g is weakly-sT-continuous, there exists $V \in TO(Y, f(x))$ such that $g(V) \subseteq Cl(W)$. Since f is irresolute, by Proposition 3.15 there exists $U \in TO(X, x)$

such that $f(U) \subseteq V$. This shows that $(g \circ f)(U) \subseteq Cl(W)$. Therefore, $g \circ f$ is weakly-*sT*-continuous.

(2) Let $x \in X$ and W be a semi-open set in Z containing $(g \circ f)(x)$. Since g is θ -irresolute, there exists $V \in SO(Y, f(x))$ such that $g(Cl(V)) \subseteq Cl(W)$. Since f is weakly-sT-continuous, there exists $U \in TO(X, x)$ such that $f(U) \subseteq Cl(V)$. Therefore, we have $(g \circ f)(U) \subseteq Cl(W)$. This shows that $g \circ f$ is weakly-sT-continuous. \Box

Definition 3.18 ([5]). A function $f : X \to Y$ is said to be pre-semi-open if f(V) is semi-open in Y for each semi-open set V in X.

Lemma 3.19 ([13]). If $f : X \to Y$ is pre-semi-open, then the image of a *T*-open set of *X* is *T*-open in *Y*.

Proposition 3.20. Let $f : X \to Y$ be a surjective pre semi-open function and $g : Y \to Z$ a function such that $g \circ f : X \to Z$ is weakly-sT-continuous, then g is weakly-sT-continuous.

Proof. Suppose that y is any point of Y. Thus, since f is surjective, there exists a point $x \in X$ such that f(x) = y. Let $W \in SO(Z, (g \circ f)(x))$. Then there exists $U \in TO(X, x)$ such that $g(f(U)) \subseteq Cl(W)$. Since f is pre-semi-open, then by Lemma 3.19 $f(U) \in TO(Y, y)$ such that $g(f(U)) \subseteq Cl(W)$. This implies that g is weakly-sT-continuous.

Lemma 3.21 ([13]). Let (X, τ) be a topological space. Then the intersection of an α -open set and a T-open set is T-open.

Lemma 3.22 ([1]). Let A and X_0 be subsets of X such that $A \subseteq X_0$ and $X_0 \in \alpha O(X)$. Then $A \in TO(X)$ if and only if $A \in TO(X_0)$.

Proposition 3.23. If $f : X \to Y$ is weakly-sT-continuous and X_0 is an α -open set in X, then the restriction $f_{|X_0} : X_0 \to Y$ is weakly-sT-continuous.

Proof. Since f is weakly-sT-continuous, for any regular closed set V in Y, $f^{-1}(V)$ is T-open in X. Hence by Lemma 3.21, $f^{-1}(V) \cap X_0$ is T-open in X. Therefore, by Lemma 3.22, $f_{|X_0}(V) = f^{-1}(V) \cap X_0$ is T-open in X_0 . This implies that $f_{|X_0}$ is weakly-sT-continuous.

A subset S of X is said to be S-closed relative to X [12] if for every cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of S by semi-open sets in X, there exists a finite subfamily Λ_0 of Λ such that $S \subseteq \bigcup \{Cl(U_{\alpha}) : \alpha \in \Lambda_0\}$.

Definition 3.24. (1) [4] A space X is said to be semi-compact if every semiopen cover of X has a finite subcover.

(2) A subset A of a space X is said to be semi-compact relative to X if every cover of A by semi-open sets of X has a finite subcover.

Theorem 3.25. A subset A of a space X is semi-compact relative to X if and only if for any cover $\{V_{\alpha} : \alpha \in \Lambda\}$ of A by T-open sets of X, there exists a finite subset Λ_0 of Λ such that $A \subseteq \cup \{V_{\alpha} : \alpha \in \Lambda_0\}$. *Proof.* Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of A and $V_{\alpha} \in TO(X)$. For each $x \in A$, there exists $\alpha(x) \in \Lambda$ such that $x \in V_{\alpha(x)}$. Since $V_{\alpha(x)}$ is T-open, there exists a semi-open set $U_{\alpha(x)} \in SO(X)$ such that $x \in U_{\alpha(x)}$ and $U_{\alpha(x)} \setminus V_{\alpha(x)}$ is finite. The family $\{U_{\alpha(x)} : x \in A\}$ is a semi-open cover of A and A is semi-compact relative to X. There exists a finite subset, says, x_1, x_2, \ldots, x_n such that $A \subseteq \bigcup \{U_{\alpha(x_i)} : i \in F\}$ where $F = \{1, 2, \ldots, n\}$. Now, we have

$$A \subseteq \bigcup_{i \in F} \left(\left(U_{\alpha(x_i)} \setminus V_{\alpha(x_i)} \right) \cup V_{\alpha(x_i)} \right)$$
$$= \left(\bigcup_{i \in F} \left(U_{\alpha(x_i)} \setminus V_{\alpha(x_i)} \right) \right) \cup \left(\bigcup_{i \in F} V_{\alpha(x_i)} \right).$$

For each $\alpha(x_i), U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}$ is a finite set and there exists a finite subset $\Lambda_{\alpha(x_i)}$ of Λ such that $(U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \cap A \subseteq \bigcup \{V_{\alpha} : \alpha \in \Lambda_{\alpha(x_i)}\}$. Therefore, we have $A \subseteq \left(\bigcup_{i \in F} \left(\bigcup \left(V_{\alpha} : \alpha \in \Lambda_{\alpha(x_i)}\right)\right)\right) \cup \left(\bigcup_{i \in F} V_{\alpha(x_i)}\right)$. Hence A is semi-compact relative to X.

Conversely since every semi-open set is T-open, the proof is obvious.

Theorem 3.26. If $f : X \to Y$ is weakly-sT-continuous and A is semi-compact relative to X, then f(A) is S-closed relative to Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of f(A) by semi-open sets of Y. Since f is weakly-sT-continuous and $Cl(V_{\alpha})$ is regular closed in Y, $f^{-1}(Cl(V_{\alpha}))$ is T-open in X and $\{f^{-1}(Cl(V_{\alpha})) : \alpha \in \Lambda\}$ is a cover of A by T-open sets of X. By Theorem 3.25, there exists a finite subset Λ_0 of Λ such that $A \subseteq \cup\{f^{-1}(Cl(V_{\alpha})) : \alpha \in \Lambda_0\}$. Therefore, we obtain $f(A) \subseteq \cup\{Cl(V_{\alpha}) : \alpha \in \Lambda_0\}$. This shows that f(A) is S-closed relative to Y.

Corollary 3.27. Let $f : X \to Y$ be a weakly-sT-continuous surjection. If X is semi-compact, then Y is S-closed.

4. T-closed graphs

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by G(f).

Definition 4.1. The graph G(f) of a function $f : X \to Y$ is said to be *T*-closed if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in TO(X, x)$ and $V \in SO(Y, y)$ such that $[U \times Cl(V)] \cap G(f) = \phi$.

Lemma 4.2. The following properties are equivalent for the graph G(f) of a function $f: X \to Y$:

- (1) The graph G(f) is T-closed in $X \times Y$;
- (2) For each point $(x, y) \in (X \times Y) G(f)$, there exist $U \in TO(X, x)$ and $V \in SO(Y, y)$ such that $f(U) \cap Cl(V) = \phi$;
- (3) For each point $(x, y) \in (X \times Y) G(f)$, there exist $U \in TO(X, x)$ and $F \in RC(Y, y)$ such that $f(U) \cap F = \phi$.

Proposition 4.3. If $f : X \to Y$ is weakly-sT-continuous and Y is s-Urysohn, G(f) is T-closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since Y is s-Urysohn, there exist $V \in SO(Y, f(x))$ and $W \in SO(Y, y)$ such that $Cl(V) \cap Cl(W) = \phi$. Since f is weakly-sT-continuous, there exists $U \in TO(X, x)$ such that $f(U) \subseteq Cl(V)$. Therefore $f(U) \cap Cl(W) = \phi$ and by Lemma 4.2, G(f) is T-closed in $X \times Y$.

A space X is weakly Hausdorff [15] if each point of X is an intersection of regular closed sets of X.

Proposition 4.4. If $f : X \to Y$ is surjective and G(f) is T-closed, then Y is weakly Hausdorff.

Proof. Let y_1 and y_2 be any distinct points of Y. Since f is surjective, $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. By Lemma 4.2, there exist $U \in TO(X, x)$ and $F \in RC(Y, y_2)$ such that $f(U) \cap F = \phi$, hence $y_1 \notin F$. This implies that Y is weakly Hausdorff. \Box

Theorem 4.5. Let X be an extremally disconnected topological space. If a function $f: X \to Y$ has a T-closed graph, then $f^{-1}(S)$ is T-closed in X for every subset S which is S-closed relative to Y.

Proof. Let S be S-closed relative to Y and $x \notin f^{-1}(S)$. For each $y \in S$, we have $(x, y) \in (X \times Y) - G(f)$ and there exist $U_y \in TO(X, x)$ and $V_y \in SO(Y, y)$ such that $f(U_y) \cap Cl(V_y) = \phi$. The family $\{V_y : y \in S\}$ is a cover of S by semi-open sets of Y and there exists a finite number of points say, y_1, y_2, \ldots, y_n of S such that $S \subseteq \{Cl(V_{y_i}) : i = 1, 2, \ldots, n\}$. Put $U = \cap \{U_{y_i} : i = 1, 2, \ldots, n\}$. Since X is extremally disconnected, by Theorem 2.8 of [1] U is a T-open neighborhood of x and $f(U) \cap S = \phi$. Therefore, we obtain $U \cap f^{-1}(S) = \phi$. This shows that $f^{-1}(S)$ is T-closed in X.

5. Quasi-sT-continuous functions

A subset S of X is said to be semi-regular [6] (resp. T-regular) if it is both semi-open and semi-closed (resp. T-open and T-closed) in X. The family of all semi-regular (resp. T-regular) sets of X is denoted SR(X) (resp. TR(X)). For each $x \in X$, the family of all semi-regular (resp. T-regular) sets containing x is denoted by SR(X, x) (resp. TR(X, x)).

In [6], the authors showed the following propositions. **Proposition 5.1.** If $U \in SO(X)$, then $sCl(U) \in SR(X)$.

A pint $x \in X$ is called a semi- θ -adherent point of a subset S of X if $sCl(U) \cap S \neq \phi$ for every $U \in SO(X, x)$. The set of all semi- θ -adherent points of S is called the semi- θ -closure of S and is denoted by $sCl_{\theta}(S)$. A subset S is said

to be semi- θ -closed if $sCl_{\theta}(S) = S$. The complement of a semi- θ -closed set is said to be semi- θ -open.

Proposition 5.2. Let A be a subset of a space X. Then we have

(1) If $A \in SO(X)$, then $sCl(A) = sCl_{\theta}(A)$.

(2) If $A \in SR(X)$, then A is semi-open and semi-closed.

Definition 5.3. A function $f : X \to Y$ is said to be quasi-*sT*-continuous if for each $x \in X$ and each semi-open set V of Y containing f(x), there exists $U \in TO(X, x)$ such that $f(U) \subseteq sCl(V)$.

Theorem 5.4. For a function $f : X \to Y$, the following conditions are equivalent:

- (1) f is quasi-sT-continuous;
- (2) $tCl(f^{-1}(B)) \subseteq f^{-1}(sCl_{\theta}(B))$ for every subset B of Y;

(3) $f(tCl(A)) \subseteq sCl_{\theta}(f(A))$ for every subset A of X;

(4) $f^{-1}(F) \in TC(X)$ for every semi- θ -closed set F in Y;

(5) $f^{-1}(V) \in TO(X)$ for every semi- θ -open set V in Y.

Proof. (1) \Rightarrow (2): Let $B \subseteq Y$ and $x \notin f^{-1}(sCl_{\theta}(B))$. Then $f(x) \notin sCl_{\theta}(B)$ and there exists $V \in SO(Y, f(x))$ such that $sCl(V) \cap B = \phi$. By (1), there exists $U \in TO(X, x)$ such that $f(U) \subseteq sCl(V)$. Hence, $f(U) \cap B = \phi$ and $U \cap f^{-1}(B) = \phi$. Consequently, we obtain $x \notin tCl(f^{-1}(B))$.

 $(2) \Rightarrow (3)$: For any subset A of X, the inclusion $tCl(A) \subseteq tCl(f^{-1}(f(A)))$ hold. By (2), we have $tCl(f^{-1}(f(A))) \subseteq f^{-1}(sCl_{\theta}(f(A)))$ and hence $f(tCl(A)) \subseteq sCl_{\theta}(f(A))$.

 $\begin{array}{ll} (3) \Rightarrow (4): \mbox{ Let } F \mbox{ be semi-θ-closed in } Y. \mbox{ We have } sCl_{\theta}(f(f^{-1}(F))) \subseteq sCl_{\theta}(F). \mbox{ By } (3) \mbox{ we obtain } f(tCl(f^{-1}(F)) \subseteq sCl_{\theta}(f(f^{-1}(F))), \mbox{ and hence } tCl(f^{-1}(F)) \subseteq f^{-1}(sCl_{\theta}(F)) = f^{-1}(F). \mbox{ Therefore, } f^{-1}(F) \mbox{ is } T\text{-closed in } X. \mbox{ } (4) \Rightarrow (5): \mbox{ If } V \mbox{ is semi-θ-open in } Y, \mbox{ then } Y - V \mbox{ is semi-θ-closed. By } (4), \mbox{ } f^{-1}(Y - V) = X - f^{-1}(V) \mbox{ is } T\text{-closed in } X. \mbox{ Thus, } f^{-1}(V) \in TO(X). \end{array}$

 $(5) \Rightarrow (1)$: Let $x \in X$ and $V \in SO(Y, f(x))$. It follows from Propositions 5.1 and 5.2 that sCl(V) is semi- θ -open in Y. Set $U = f^{-1}(sCl(V))$. By (5) we observe that $U \in TO(X)$ and $f(U) \subseteq sCl(V)$. The proof is complete. \Box

Theorem 5.5. For a function $f : X \to Y$, the following conditions are equivalent:

(1) f is quasi-sT-continuous;

(2) $f^{-1}(V) \subseteq tInt(f^{-1}(sCl(V)))$ for every subset $V \in SO(Y)$;

(3) $tCl(f^{-1}(V)) \subseteq f^{-1}(sCl(V))$ for every subset $V \in SO(Y)$.

Proof. (1) \Rightarrow (2): Assume that $V \in SO(Y)$ and let $x \in f^{-1}(V)$. Then there exists $U \in TO(X, x)$ such that $f(U) \subseteq sCl(V)$. Hence we have $U \subseteq f^{-1}(sCl(V))$ and $x \in U \subseteq tInt(f^{-1}sCl(V)))$. This shows that $f^{-1}(V) \subseteq tInt(f^{-1}(sCl(V)))$.

 $(2) \Rightarrow (3)$: Assume that $V \in SO(Y)$ and $x \notin f^{-1}(sCl(V))$. Then $f(x) \notin sCl(V)$. There exists $H \in SO(Y, f(x))$ such that $H \cap V = \phi$. Since $V \in SO(Y)$,

we have $sCl(H) \cap V = \phi$ and hence $tInt(f^{-1}(sCl(H))) \cap f^{-1}(V) = \phi$. It follows from (2) that $x \in f^{-1}(H) \subseteq tInt(f^{-1}(sCl(H))) \in TO(X)$. Therefore, $x \notin tCl(f^{-1}(V))$. This shows that $tCl(f^{-1}(V)) \subseteq f^{-1}(sCl(V))$.

 $\begin{array}{l} (3) \Rightarrow (1): \mbox{ Let } x \in X \mbox{ and } V \in SO(Y,f(x)). \mbox{ By Proposition 5.1, } sCl(V) \in SR(X) \mbox{ and } f(x) \in Y - sCl(Y - sCl(V)). \mbox{ Hence we have } x \notin f^{-1}(sCl(Y - sCl(V))). \mbox{ Since } Y - sCl(V) \in SO(Y), \mbox{ it follows from (3) that } x \notin tCl(f^{-1}(Y - sCl(V))). \mbox{ Thus, there exists } U \in TO(X,x) \mbox{ such that } U \cap f^{-1}(Y - sCl(V)) = \phi. \mbox{ Therefore, we obtain } f(U) \cap (Y - sCl(V)) = \phi \mbox{ and hence } f(U) \subseteq sCl(V). \end{tabular}$

Theorem 5.6. For a function $f : X \to Y$, the following conditions are equivalent:

- (1) f is quasi-sT-continuous;
- (2) For each $x \in X$ and each $V \in SO(Y, f(x))$, there exists $U \in TO(X, x)$ such that $f(tCl(U)) \subseteq sCl(V)$;
- (3) $f^{-1}(V) \in TR(X, x)$ for every $V \in SR(Y, f(x))$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and $V \in SO(Y, f(x))$. Then, by Propositions 5.1 and 5.2 sCl(V) is both semi- θ -open and semi- θ -closed. Put $U = f^{-1}(sCl(V))$. Then it follows from Theorem 5.4 that $U \in TR(X)$. Thus we obtain $U \in TO(X)$, U = tCl(U) and $f(tCl(U)) \subseteq sCl(V)$.

 $(2) \Rightarrow (1)$: It is obvious.

(1) \Rightarrow (3): Let $V \in SR(Y)$. By Proposition 5.2 V is semi- θ -open and semi- θ -closed in Y. It follows from Theorem 5.4 that $f^{-1}(V) \in TR(X, x)$.

 $(3) \Rightarrow (1)$: Let $x \in X$ and $V \in SO(Y, f(x))$. By Proposition 5.1 $sCl(V) \in SR(Y, f(x))$ and $f^{-1}(sCl(V)) \in TR(X, x)$. Put $U = f^{-1}(sCl(V))$, then $U \in TO(X, x)$ and $f(U) \subseteq sCl(V)$. This shows that f is quasi-sT-continuous. \Box

Definition 5.7 ([16]). A topological space X is said to be s-closed if for every semi-open cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of X there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $X = \bigcup \{sCl(U_{\alpha}) : \alpha \in \Lambda_0\}.$

A subset S of X is said to be s-closed relative to X [6] if for every cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of S by semi-open sets in X, there exists a finite subfamily Λ_0 of Λ such that $S \subseteq \cup \{sCl(U_{\alpha}) : \alpha \in \Lambda_0\}$.

Theorem 5.8. If $f : X \to Y$ is quasi-sT-continuous and A is semi-compact relative to X, then f(A) is s-closed relative to Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be any cover of f(A) by semi-open sets of Y. For each $x \in A$, there exists an $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is quasi-sT-continuous, there exists $U_x \in TO(X)$ containing x such that $f(U_x) \subseteq sCl(V_{\alpha(x)})$. Since $\{U_x : x \in A\}$ is a cover of A by T-open sets of X, by Theorem 3.25 there exist finite points, say, x_1, x_2, \ldots, x_n of A such that $A \subseteq \cup \{U_{x_i} : i = 1, 2, \ldots, n\}$. Therefore, we obtain

$$f(A) \subseteq \bigcup_{i=1}^{n} f(U_{x_i}) \subseteq \bigcup_{i=1}^{n} sCl(V_{\alpha(x_i)}).$$

This shows that f(A) is s-closed relative to Y.

Corollary 5.9. If $f : X \to Y$ is a quasi-sT-continuous surjection and X is semi-compact, then Y is s-closed.

6. Strongly-sT-continuous functions

Definition 6.1. A function $f : X \to Y$ is said to be strongly-*sT*-continuous if for each $x \in X$ and each semi-open set V of Y containing f(x), there exists $U \in TO(X, x)$ such that $f(Cl(U)) \subseteq V$.

Theorem 6.2. If $f : X \to Y$ is a strongly-sT-continuous surjection and X is S-closed, then Y is semi-compact.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be any semi-open cover of Y. For each $x \in X$, there exists an $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is strongly-sT-continuous, there exists a $U_x \in TO(X)$ containing x such that $f(Cl(U_x)) \subseteq V_{\alpha(x)}$. Since $\{U_x : x \in X\}$ is a T-open cover of X, by Corollary 3.8 there exist finite points, say, x_1, x_2, \ldots, x_n of X such that $X = \bigcup \{Cl(U_{x_i}) : i = 1, 2, \ldots, n\}$. Since f is surjective,

$$Y = \bigcup_{i=1}^{n} f(Cl(U_{x_i})) \subseteq \bigcup_{i=1}^{n} V_{\alpha(x_i)}.$$

This shows that Y is semi-compact.

continuous if

Definition 6.3. A function $f : X \to Y$ is said to be θ -sT-continuous if for each $x \in X$ and each semi-open set V of Y containing f(x), there exists $U \in TO(X, x)$ such that $f(Cl(U)) \subseteq sCl(V)$.

Theorem 6.4. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function, given by g(x) = (x, f(x)) for every $x \in X$. If g is θ -sT-continuous, then f is θ -sT-continuous.

Proof. Let $x \in X$ and $V \in SO(Y, f(x))$. Then $X \times V$ is a semi-open set of $X \times Y$ containing g(x) and hence there exists $U \in TO(X, x)$ such that $g(Cl(U)) \subseteq sCl(X \times V) \subseteq X \times sCl(V)$. By the definition of g, we have $f(Cl(U)) \subseteq sCl(V)$. Therefore, f is θ -sT-continuous.

Theorem 6.5. If $f : X \to Y$ is a θ -sT-continuous surjection and X is S-closed, then Y is s-closed.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be any semi-open cover of Y. For each $x \in X$, there exists an $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is θ -sT-continuous, there exists $U_x \in TO(X)$ containing x such that $f(Cl(U_x)) \subseteq sCl(V_{\alpha(x)})$. Since $\{U_x : x \in X\}$ is a T-open cover of X, by Corollary 3.8 there exist finite points, say, x_1, x_2, \ldots, x_n of X such that $X = \bigcup \{Cl(U_{x_i}) : i = 1, 2, \ldots, n\}$. Since f is surjective,

$$Y = \bigcup_{i=1}^{n} f(Cl(U_{x_i})) \subseteq \bigcup_{i=1}^{n} sCl(V_{\alpha(x_i)}).$$

This shows that Y is *s*-closed.

Acknowledgements. The authors wish to thank the referee for useful comments and suggestions. The authors would like to acknowledge the grants: UKM Grant DIP-2014-034 and Ministry of Education, Malaysia, Grant FRGS/ 1/2014/ST06/UKM/01/1 for financial support.

References

- A. Al-Omari, T. Noiri, and M. S. M. Noorani, New characterizations of S-closed spaces, Questions Answere Gen. Topology 27 (2009), no. 2, 175–185.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.
- [3] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72 (1978), no. 3, 581–586.
- [4] D. A. Carnahan, Some properties related to compactness in topological spaces, Ph. D. Thesis, Univ. of Arkansas, 1973.
- [5] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), no. 3, 233–254.
- [6] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18 (1987), no. 3, 226–233.
- [7] M. Ganster, T. Noiri, and I. L. Reilly, Weak and strong forms of θ-irresolute functions, J. Inst. Math. Comput. Sci. Math. Ser. 1 (1988), no. 1, 19–29.
- [8] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc. 80 (1980), no. 2, 341–348.
- [9] F. H. Khedr and T. Noiri, On θ -irresolute functions, Indian J. Math. 28 (1986), no. 3, 211–217.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [11] T. Noiri, On semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 210–214.
- [12] _____, On s-closed spaces, Ann. Soc. Sci. Bruxelles Sér. I **91** (1977), no. 4, 189–194.
- [13] T. Noiri, A. Al-Omari, and M. S. M. Noorani, On T-open sets and semi-compact spaces, Mathematica 51(74) (2009), no. 2, 153–161.
- [14] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Mat. Ser. III 4(24) (1969), 89–99.
- [15] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relation to Modern Analysis and Algebra III, 301–306, Proc. Conf. Kampur, 1968, Academia, Prague 1971.
- [16] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335-338.

Ahmad Al-Omari Department of Mathematics Faculty of Sciences Al al-Bayt University P.O. Box 130095, Mafraq 25113, Jordan *E-mail address*: omarimutah1@yahoo.com

Takashi Noiri

2949-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMAMOTO-KEN, 869-5142 JAPAN *E-mail address*: t.noiri@nifty.com

Mohd. Salmi Md. Noorani School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia *E-mail address:* msn@ukm.my