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VOLUME RATIOS OF A HYPERSURFACE RELATIVE TO

THE FLRW SPACE-TIME

Jong Ryul Kim

Abstract. We calculate volume ratio of a hypersurface orthogonal to a
timelike geodesic relative to that of a hypersurface in the FLRW space-
time.

1. Introduction

The accelerated expanding universe by the cosmological observations has
been recently one of the most remarkable achievements. It is well known that
the Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time as the homo-
geneous and isotropic universe plays a good role for the expansion of the uni-
verse by adding the cosmological constant referred to as the standard model
of cosmology. Let M̄ = (0,∞)×f S be the FLRW space-time, where S is a 3-
dimensional Riemannian manifold of constant curvature and f is a scale factor
(also known as a warping function). For a perfect fluid with energy density ρ
and pressure p, the stress-energy tensor is given by T = (ρ+ p)U∗ ⊗ U∗ + p g,
where g is a Lorentzian metric and U∗ is metric dual to an observer field U (a
future-pointing timelike unit vector field on M̄). The Friedmann equation for

the FLRW space-time −3 f
′′(t)
f(t) = 4π(ρ+ 3p) along an observer field given by a

geodesic γ̄ = (t, q̄) for q ∈ S (cf. [6]) and the equation of state w = p
ρ
< − 1

3

gives a geometrical interpretation for the expanding universe in terms of the

Ricci curvature Ric(γ̄′(t), γ̄′(t)) = −3 f
′′(t)
f(t) . So the negative Ricci curvature

indicates the expanding universe. The upperbounds of the volume expansion
rates in a Lorentzian manifold in [2], [3] and [7] are based on the inverse of
the timelike convergent condition Ric(γ′, γ′) ≥ 0 along a timelike geodesic γ
which indicates “the gravity attracts on average”. So the negative part of Ricci
curvature explains the upperbound of the volume expansion rate relative to the
space-time of zero curvature.
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From cosmological viewpoints, the FLRW space-time as the model space
for volume expansion and contraction rates is considered. By a possible influx
of dark matter and gravitational mass into the FLRW space-time nearby an
observer field, the FLRW space-time could be deformed to a space-time M
which can not be locally no longer homogeneous and isotropic with the nonzero
shear tensor along an observer field. In other words, a space-time M is a
geometry deviated from the FLRW space-time by such influx of dark matter
and gravitational mass. We calculate volume expansion and contraction rates
of a spacelike hypersurface of M relative to that of the FLRW space-time in a
geometrical way as in [2], [7] whose methods are mainly due to the Riemannian
relative volume comparison theories obtained by P. Petersen, G. Wei and C.
Sprouse [8], [9] (cf. [4], [10]).

Let M be an n-dimensional Lorentzian manifold and γv be a unit speed
timelike radial geodesic γv(t) = expptv with γv(0) = p and γ′v(0) = v for all
v ∈ TpM . Let Fut(TpM) be the set of all future directed timelike vectors
v ∈ TpM such that expp(v) is defined for a fixed point p ∈M . Put

H(r0) = {v ∈ Fut(TpM) | 〈v, v〉 = −r20}

for 0 < r0 < r < cutv(p) and denote by H∗(r0) a compact subset of H(r0).
Consider a geodesic variation along γv starting from p which produces level
hypersurfaces of geodesic sphere exppH

∗(1). Then we get the following differ-
ential equation ([3], [4])

(1) θ′ + θ2 + sM − s(Ht) + 3Ric(γ′v, γ
′

v) = 0,

where we denote by sM , s(Ht) the scalar curvature of M at the point γv(t),
the scalar curvature of level hypersurface Ht = exppH(t) (r0 < t), respectively
and θ(t) is the mean curvature of Ht along γv(t).

As a generalization of the FLRW space-time, consider a Lorentzian warped
product M̄ = (0,∞) ×f H(r0). Then a unit speed timelike radial geodesic
γ̄v̄(t) with γ̄v̄(0) = p̄ and γ̄′v̄(0) = v̄ for each v̄ ∈ Tp̄M̄ is orthogonal to the
hypersurface H(r0) at time t = r0. Since a Jacobi tensor Ā(t) along γ̄v̄(t) is
given by Ā(t) = f(t)Id with the zero shear tensor (note that the fiber is totally
umbilic and the curvature tensor is isotropic along γ̄v̄), we get the following
differential equation along γ̄v̄ ([4])

(2) θ̄′ + θ̄2 =
(n− 1)(n− 2)(f ′)2 + (n− 1)ff ′′

f2

and the Ricci curvature along γ̄v̄ is given by Ric(γ̄′v̄, γ̄
′

v̄) = − (n−1)f ′′

f
.

To compare the volume ratio, we need the following linear isometry (3). Let
M be a globally hyperbolic Lorentzian manifold of dimension n and γ be a unit
speed timelike radial geodesic orthogonal to the achronal spacelike hypersurface
H∗
r0

= exppH
∗(r0) for a fixed point p ∈M . Let A, Ā be an H∗

r0
, H∗(r0)-Jacobi
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tensor along γv, γ̄v̄, respectively. Assume a linear isometry

(3) ı : Tγv(r0)H
∗

r0
→ Tγ̄v̄(r0)H

∗(r0)

such that H∗(r0) = expγ̄v̄(r0)◦ ı◦exp
−1
γv(r0)

H∗

r0
and ı(γ′v(r0)) = γ̄′v̄(r0), ı(ei) = ēi

for an orthonormal basis {e1, e2, . . . , en−1} of Tγ(r0)H
∗

r0
and its parallel basis

{E1, E2, . . . , En−1} along γv with Ei(r0) = ei for each i. And we can apply the
above linear isometry for all directions v ∈ TpM with ı(γ′v(r0)) = γ̄′v̄(r0). So
from now on, we omit the direction v.

Now we can get the following upperbound (4) of the volume expansion rate
using the similar calculations as in [2], [7]. Let dH∗(1) be the volume element of
H∗(1). Then the volume element of a level hypersurfaceH∗

t = exppH
∗(t) along

γ(t) is given by detA(t) dH∗(1). Let M̄ = (0,∞) ×f H(r0) be a Lorentzian
warped product with dimM̄ = n. Assume that θ(r0) ≤ θ̄(r0) and θ̄(t) =
(n−1)f ′

f
≥ 0. Then we get the upperbound of the volume expansion rate

(4)
det(A(R))

det(A(r0))
≤

( f(R)

f(r0)

)n−1

exp((R − r0)
√
n− 1kγ(1, R)

1

2 ),

where kγ(1, R) = 1
R−r0

∫ R

r0
ρ̃ dt with ρ̃ = max{0,−Ric(γ′, γ′) − (n−1)f ′′

f
} and

0 < r0 < R < min{cutv̄(p̄), cutv(p)}.
As an example of (4), consider a complete and simply connected n-dimension-

al Lorentzian manifold M̄(k) of constant curvature k > 0, whose Jacobi tensor
along a unit speed timelike geodesic γ̄(t) with γ̄(0) = p̄ and γ̄′(0) = v̄ is given
by

Ā(t) =
1√
k
sinh

√
kt Id

with the initial conditions Ā(0) = 0 and Ā′(0) = Id. Note that the Jacobi
equation along γ̄ is x̄′′ − kx̄ = 0 with x̄(0) = 0 and x̄′(0) = 1, where x̄ =

(detĀ)
1

n−1 . Thus for kγ(1, R) =
1

R−r0

∫ R

r0
ρ̃ dt with ρ̃ = max{0,−Ric(γ′, γ′) +

(n− 1)k}, we have for 0 < r0 < R

det(A(R))

det(A(r0))
≤

( sinh
√
kR

sinh
√
kr0

)n−1

exp((R− r0)
√
n− 1kγ(1, R)

1

2 ),

which indicates that ρ̃ = max{0,−Ric(γ′, γ′) + (n − 1)k} does mainly control
the upperbound of the volume expansion rate of the level hypersurfaces as
follows.

Theorem 1. Let M̄ = (0,∞) ×f H(r0) be a Lorentzian warped product with

dimM̄ = n and γ̄v̄(t) be a unit speed timelike radial geodesic with γ̄v̄(0) = p̄

and γ̄′v̄(0) = v̄ for each v̄ ∈ Tp̄M̄ orthogonal to the hypersurface H(r0) at time

t = r0. Assume that θ(r0) ≤ θ̄(r0) and θ̄(t) = (n−1)f ′

f
≥ 0. Then we get the

upperbound of the volume expansion rate

det(A(R))

det(A(r0))
≤

( f(R)

f(r0)

)n−1

exp((R − r0)µγ(1, R)
1

2 ),
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where µγ(1, R) =
1

R−r0

∫ R

r0
µ dt with µ = max{0,−(sM −s(Ht)+3Ric(γ′, γ′))−

(n−1)(n−2)(f ′)2+(n−1)ff ′′

f2 } and 0 < r0 < R < min{cutv̄(p̄), cutv(p)}.
If −(sM − s(Ht) + 3Ric(γ′, γ′)) ≤ −Ric(γ′, γ′), then we get the sharper

upperbound than (4) from

max{0,−(sM − s(Ht) + 3Ric(γ′, γ′))− (n− 1)(n− 2)(f ′)2 + (n− 1)ff ′′

f2
}

≤ max{0,−(sM − s(Ht) + 3Ric(γ′, γ′))− (n− 1)f ′′

f
}

≤ max{0,−Ric(γ′, γ′)− (n− 1)f ′′

f
}.

The upperbound of the volume expansion rate calculated in [2] using θ̄′(t)+
θ̄2(t) = 0 with θ̄(0) = V > 0 is now given by

det(A(R))

det(A(r0))
≤

( V R+ 1

V r0 + 1

)

exp((R− r0)µγ(1, R)
1

2 ),

where µγ(1, R) =
1

R−r0

∫ R

r0
µ dt with µ = max{0,−(sM −s(Ht)+3Ric(γ′, γ′))}.

Finally we obtain the lowerbound of the volume contraction rate as follows.

Theorem 2. Let M̄ = (0,∞) ×f H(r0) be a Lorentzian warped product with

dimM̄ = n and γ̄v̄(t) be a unit speed timelike radial geodesic with γ̄v̄(0) = p̄

and γ̄′v̄(0) = v̄ for each v̄ ∈ Tp̄M̄ orthogonal to the hypersurface H(r0) at time

t = r0. Assume that θ(r0) ≥ θ̄(r0) and θ(t) ≥ 0. Then we get the lowerbound

of the volume contraction rate
( f(R)

f(r0)

)n−1

exp((R − r0)(−µγ(1, R)
1

2 )) ≤ det(A(R))

det(A(r0))
,

where µγ(1, R) =
1

R−r0

∫ R

r0
−µ dt with µ = min{0,−(sM−s(Ht)+3Ric(γ′, γ′))−

(n−1)(n−2)(f ′)2+(n−1)ff ′′

f2 } and 0 < r0 < R < min{cutv̄(p̄), cutv(p)}.

Note that exp((R − r0)(−µγ(1, R)
1

2 )) is less than or equal to 1. So it
could be considered as the contracting term. If sM − s(Ht) + 3Ric(γ′, γ′) ≤
− (n−1)(n−2)(f ′)2+(n−1)ff ′′

f2 , then we have

( f(R)

f(r0)

)n−1

≤ det(A(R))

det(A(r0))
.

As in [2], let’s denote 1
t+ 1

V

by θ̄(t) which satisfies θ̄′(t) + θ̄2(t) = 0 and

θ̄(0) = V > 0. Then we get by Remark 1 at the end of this paper
( V R+ 1

V r0 + 1

)

exp((R − r0)(−µγ(1, R)
1

2 )) ≤ det(A(R))

det(A(r0))
,

where µγ(1, R) =
1

R−r0

∫ R

r0
−µ dt with µ = min{0,−(sM−s(Ht)+3Ric(γ′, γ′))}.
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2. Preliminaries

Definition 1 (cf. [5]). Let γ be a unit-speed geodesic orthogonal to a hy-
persurface H at γ(r0) with Nγ(r0) = γ′(r0). A smooth (1, 1) tensor field

A : (γ′)⊥ → (γ′)⊥ is called an H-Jacobi tensor along γ if it satisfies

A′′ +R(A, γ′)γ′ = 0, kerA ∩ kerA′ = {0}, A(r0) = Id, A′(r0) = S−N ,

where Id is the identity endomorphism of (γ′)⊥.

Put B = A′A−1 for an H-Jacobi tensor A along γ, then we have

(5) B′ = A′′A−1 −A′A−1A′A−1 = −Rγ′ −B ◦B,

where we put R(A, γ′)γ′ = Rγ′A. The expansion θ can be written as

(6) θ = tr(B) =
(det(A))′

det(A)
.

The shape operator S−γ′(t) of each level hypersurface Ht is given by

(7) A′A−1(t) = S−γ′(t) = St

as in [1] and we denote by θ(t) = trS−γ′(t) the mean curvature of Ht along
γ(t). The shear tensor σ of A along γ is defined by

σ = B − θ

n− 1
Id.

Note that a variation tensor field A is a Lagrange tensor (Proposition 1 in [1]).
So the vorticity 1

2 (B − B∗) is zero, where ∗ denotes the adjoint. Taking the
trace of (5), we get the Raychaudhuri equation

(8) θ′ +
θ2

n− 1
+ Ric(γ′, γ′) + trσ2 = 0,

where Ric(γ′, γ′) =
∑n−1

i=1 g(R(ei, γ
′)γ′, ei) for an orthonormal basis {ei}n−1

i=1 of

γ′⊥.

Putting x = detA
1

n−1 , we see

(9) x′ =
1

n− 1
xθ, x′′ =

1

n− 1
(θ′ +

θ2

n− 1
)x.

So we obtain the Jacobi equation by (8) and (9)

(10) x′′ +
1

n− 1
(Ric(γ′, γ′) + trσ2)x = 0.
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3. Proofs

Mathematically we adopt the methods of relative volume comparison theo-
ries studied in [8], [9] and [10]. The upperbound (4) can be obtained by using
Raychaudhuri equation with the calculations ([2], [7]) for some interval satisfy-

ing Ric(γ̄′, γ̄′) = − (n−1)f ′′

f
≥ Ric(γ′, γ′). We introduce here basic methods for

the calculations. The Raychaudhuri equation along a geodesic γ̄(t) = (t, q̄) in
M̄ = (0,∞)×f H(r0) is given by

(11) θ̄′ +
θ̄2

n− 1
= −Ric(γ̄′, γ̄′) =

(n− 1)f ′′

f
,

since we have the H(r0)-Jacobi tensor Ā(t) = f(t)Id and the zero shear tensor
σ = 0 along γ̄. The Raychaudhuri equation along a geodesic γ(t) in M is

(12) θ′ +
θ2

n− 1
+ Ric(γ′, γ′) + trσ2 = 0.

So we have the following inequality

(13) θ′ +
θ2

n− 1
≤ −Ric(γ′, γ′),

since trσ2 is not negative.
Put ψ(t) = max{0, θ(t)− θ̄(t)}. The subtraction (11) from (13) gives

(14) ψ′ +
ψ2

n− 1
+

2ψθ̄

n− 1
≤ ρ̃,

where ρ̃ = max{0,−Ric(γ′, γ′) − (n−1)f ′′

f
}. Multiply the inequality (14) by

ψ2p−2 and integrate to get

(15)

∫ R

r0

ψ2p dt ≤ (n− 1)p
∫ R

r0

ρ̃p dt

for p ≥ 1 under the assumption θ(r0) ≤ θ̄(r0) as in [7].

Since θ = (det(A))′

det(A) , we see

log
( det(A(R))

det(A(r0))

)

=

∫ R

r0

(det(A))′

det(A)
dt =

∫ R

r0

θ dt ≤
∫ R

r0

θ̄ dt+

∫ R

r0

ψ dt

and
∫ R

r0

θ̄ dt = (n− 1)

∫ R

r0

f ′

f
dt = log

( f(R)

f(r0)

)n−1

.

So we have

det(A(R))

det(A(r0))
≤ e

∫
R

r0
θ̄ dt
e
∫

R

r0
ψ dt ≤

( f(R)

f(r0)

)n−1

e
∫

R

r0
ψ dt

.

Using Hölder inequality together with (15) as in [7], we get the upperbound of
∫ R

r0
ψ dt of (4).
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So the upperbound (4) indicates that if Ric(γ′, γ′) ≥ − (n−1)f ′′

f
, then the

volume expansion rate det(A(R))
det(A(r0))

is less than equal to
(

f(R)
f(r0)

)n−1

. Also the

upperbound (4) can be viewed as a generalization of the case with f(t) =

V t+ n− 1 so that θ̄(t) = (n− 1) f
′(t)
f(t) = (n− 1) V

V t+n−1 = n−1
t+n−1

V

(16)
det(A(R))

det(A(r0))
≤

( V R+ n− 1

V r0 + n− 1

)n−1

exp((R− r0)
√
n− 1kγ(1, R)

1

2 ),

where kγ(1, R) =
1

R−r0

∫ R

r0
ρ̃(t) dt, ρ̃(t) = max{0,−Ric(γ′, γ′)} and V = θ̄(r0) =

(detA(r0))
′

detA(r0)
> 0 obtained in [2] and [7].

Proof of Theorem 1. Put ψ(t) = max{0, θ(t)− θ̄(t)}. The subtraction (2) from
(1) gives

(17) ψ′ + ψ2 + 2ψθ̄ ≤ µ,

where µ = max{0,−(sM − s(Ht) + 3Ric(γ′, γ′)) − (n−1)(n−2)(f ′)2+(n−1)ff ′′

f2 }.
Thus we get

ψ′ + ψ2 + 2ψθ̄ ≤ ρ̃.

Multiply the inequality (17) by ψ2p−2 and integrate to get

(18)

∫ R

r0

ψ2p dt ≤
∫ R

r0

µp dt

for p ≥ 1 under the assumptions θ̄(t) ≥ 0 and θ(r0) ≤ θ̄(r0). By Hölder
inequality, we get

1

R− r0

∫ R

r0

ψ dt ≤ 1

R− r0

(

∫ R

r0

ψ2p dt
)

1

2p

(R− r0)
1

q

≤ 1

R− r0

(

∫ R

r0

µp dt
)

1

2p

(R− r0)
1

q

≤
( 1

R− r0

∫ R

r0

µp dt
)

1

2p

for 1
2p + 1

q
= 1 (2p > 1). Put µγ(p,R) =

1
R−r0

∫ R

r0
µp dt, then

(19)
1

R− r0

∫ R

r0

ψ dt ≤
( 1

R− r0

∫ R

r0

µp dt
)

1

2p

= (µγ(p,R))
1

2p .

Then we obtain

det(A(R))

det(A(r0))
≤ e

∫
R

r0
θ̄ dt
e
∫

R

r0
ψ dt ≤

( f(R)

f(r0)

)n−1

exp((R− r0)(µγ(p,R)
1

2p ))

for µγ(p,R) =
1

R−r0

∫ R

r0
µp dt. Using Hölder inequality, we get

∫ R

r0

1

R− r0
µ dt ≤

(

∫ R

r0

µp dt
)

1

p
(

∫ R

r0

(
1

R− r0
)q dt

)
1

q

=
( 1

R − r0

∫ R

r0

µp dt
)

1

p



488 JONG RYUL KIM

for 1
p
+ 1

q
= 1. Hence for any positive p > 1,

(20) µγ(1, R) =
1

R− r0

∫ R

r0

µ dt ≤
( 1

R − r0

∫ R

r0

µp dt
)

1

p

= (µγ(p,R))
1

p ,

which means that µγ(1, R) = inf{(µγ(p,R))
1

p | p > 1}. So we get the upper-

bound of
∫ R

r0
ψ dt of Theorem 1. �

Proof of Theorem 2. Put ψ(t) = min{0, θ(t)− θ̄(t)}. Then
(21) θ ≥ θ̄ + ψ.

The subtraction (2) from (1) gives

ψ′ − ψ2 + 2ψθ ≥ µ,

where µ = min{0,−(sM − s(Ht)+ 3Ric(γ′, γ′))− (n−1)(n−2)(f ′)2+(n−1)ff ′′

f2 } (cf.

(17)). Thus we have

(22) −ψ′ + ψ2 − 2ψθ ≤ −µ.
Multiply (22) by ψ2p−2 and integrate to get

(23) −
∫ R

r0

ψ′ψ2p−2 dt+

∫ R

r0

ψ2p dt− 2

∫ R

r0

ψ2p−1θ dt ≤
∫ R

r0

−µψ2p−2 dt.

Since ψ2p−1 = (ψ2)p−1ψ ≤ 0, θ(t) ≥ 0 and ψ(r0) = 0 from the assumptions of
Theorem 2, we get

−
∫ R

r0

ψ′ψ2p−2 dt = − 1

2p− 1
ψ2p−1

∣

∣

∣

R

r0
≥ 0, −2

∫ R

r0

ψ2p−1θ dt ≥ 0.

Hence (23) becomes
∫ R

r0

ψ2p dt ≤
∫ R

r0

−µψ2p−2 dt.

By Hölder inequality, we get

(24)

∫ R

r0

ψ2p dt ≤
∫ R

r0

−µψ2p−2 dt ≤
(

∫ R

r0

(−µ)pdt
)

1

p
(

∫ R

r0

ψ2p dt
)1− 1

p

.

Dividing by
(

∫ R

r0
ψ2p dt

)1− 1

p

, we get for p > 1

(25)
(

∫ R

r0

ψ2p dt
)

1

p ≤
(

∫ R

r0

(−µ)p dt
)

1

p

,

which holds trivially for p = 1 from (23).
Using Hölder inequality, we see

1

R − r0

∫ R

r0

−ψ dt ≤ 1

R− r0

(

∫ R

r0

(−ψ)2p dt
)

1

2p

(R− r0)
1

q
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for 1
2p + 1

q
= 1(2p > 1). Thus we get

(26)
1

R− r0

∫ R

r0

ψ dt ≥ −1

R− r0

(

∫ R

r0

(−ψ)2p dt
)

1

2p

(R− r0)
1

q .

And we get by (25) and (26)

1

R− r0

∫ R

r0

ψ dt ≥ −1

R − r0

(

∫ R

r0

(−µ)p dt
)

1

2p

(R − r0)
1

q

= −
( 1

R− r0

∫ R

r0

(−µ)p dt
)

1

2p

.

Put

µγ(p,R) =
1

R− r0

∫ R

r0

(−µ)p dt,

then we have

(27)
1

R− r0

∫ R

r0

ψ dt ≥ −
( 1

R− r0

∫ R

r0

(−µ)p dt
)

1

2p

= −(µγ(p,R))
1

2p .

Note that θ = tr(B) = (det(A))′

det(A) (6) and θ̄ = (n−1)f ′

f
from Ā = f Id. So we have

(28)

∫ R

r0

θ̄ dt = (n− 1)

∫ R

r0

f ′

f
dt = log

( f(R)

f(r0)

)n−1

.

Since θ ≥ θ̄ + ψ (21), we see

log
( det(A(R))

det(A(r0))

)

=

∫ R

r0

(det(A))′

det(A)
dt =

∫ R

r0

θ dt ≥
∫ R

r0

θ̄ dt+

∫ R

r0

ψ dt.

Thus it follows from (27) and (28) that

(29)
det(A(R))

det(A(r0))
≥ e

∫
R

r0
θ̄ dt
e
∫

R

r0
ψ dt ≥

( f(R)

f(r0)

)n−1

exp((R− r0)(−µγ(p,R)
1

2p )).

Again by Hölder inequality, we get
∫ R

r0

1

R− r0
|µ| dt ≤

(

∫ R

r0

|µ|p dt
)

1

p
(

∫ R

r0

(
1

R − r0
)q dt

)
1

q

=
( 1

R− r0

∫ R

r0

|µ|p dt
)

1

p

for 1
p
+ 1

q
= 1. Hence for p > 1, we see

(30) −
( 1

R− r0

∫ R

r0

(−µ)p dt
)

1

2p ≤ −
( 1

R− r0

∫ R

r0

|µ| dt
)

1

2

= −µγ(1, R)
1

2 ,

which means that −µγ(1, R) = sup{(−µγ(p,R))
1

p | p > 1}. The lowerbound of
Theorem 2 follows from (29) and (30), that is,

( f(R)

f(r0)

)n−1

exp((R − r0)(−µγ(1, R)
1

2 )) ≤ det(A(R))

det(A(r0))
.

�
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Remark 1. Instead of the equation (2), consider

(31) θ̄′(t) + θ̄2(t) = 0,

whose solution is denoted by θ̄(t) = 1
t+ 1

V

with θ̄(0) = V > 0 as in [2]. Put

ψ(t) = min{0, θ(t) − θ̄(t)}. By the subtraction (1) from (31), we have

(32) ψ′ − ψ2 + 2ψθ ≥ µ,

where µ = min{0,−(sM − s(Ht) + 3Ric(γ′, γ′))}. Since
∫ R

r0

θ̄ dt =

∫ R

r0

d

dt
(log(V t+ 1)) dt = log

V R+ 1

V r0 + 1
,

we get from the same arguments of the proof of Theorem 2
( V R+ 1

V r0 + 1

)

exp((R − r0)(−µγ(1, R)
1

2 )) ≤ det(A(R))

det(A(r0))
,

where µγ(1, R) =
1

R−r0

∫ R

r0
−µ dt.

If −(sM − s(Ht) + 3Ric(γ′, γ′)) ≥ −Ric(γ′, γ′), then we get

(33) ψ′ − ψ2 + 2ψθ ≥ µ ≥ µ̃,

where µ̃ = min{0,−Ric(γ′, γ′))}. Thus we get

(

∫ R

r0

−ψ2p dt
)

1

p ≤
(

∫ R

r0

(−µ)p dt
)

1

p ≤
(

∫ R

r0

(−µ̃)p dt
)

1

p

,

which leads to
( V R+ 1

V r0 + 1

)

exp((R − r0)(−µ̃γ(1, R)
1

2 ))

≤
( V R+ 1

V r0 + 1

)

exp((R − r0)(−µγ(1, R)
1

2 )) ≤ det(A(R))

det(A(r0))
,

where µ̃γ(1, R) =
1

R−r0

∫ R

r0
−µ̃ dt with µ̃ = min{0,−Ric(γ′, γ′))}.

Consider

θ̄′ + θ̄2 =
(n− 1)(n− 2)(f ′)2 + (n− 1)ff ′′

f2
≥ (n− 1)f ′′

f

and subtract it from (1), we have

(34) ψ′ − ψ2 + 2ψθ ≥ µ,

where µ = min{0,−(sM − s(Ht) + 3Ric(γ′, γ′))− (n−1)f ′′

f
}. Note that

µ̃=min{0,−(sM − s(Ht)+3Ric(γ′, γ′))− (n− 1)(n− 2)(f ′)2 + (n− 1)ff ′′

f2
}

≤ µ=min{0,−(sM − s(Ht)+3Ric(γ′, γ′))− (n− 1)f ′′

f
}.

Hence −
(

1
R−r0

∫ R

r0
|µ̃| dt

)
1

2 ≤ −
(

1
R−r0

∫ R

r0
|µ| dt

)
1

2

(see (30)).
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