VOLUME RATIOS OF A HYPERSURFACE RELATIVE TO THE FLRW SPACE-TIME

Jong Ryul Kim

Abstract

We calculate volume ratio of a hypersurface orthogonal to a timelike geodesic relative to that of a hypersurface in the FLRW spacetime.

1. Introduction

The accelerated expanding universe by the cosmological observations has been recently one of the most remarkable achievements. It is well known that the Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time as the homogeneous and isotropic universe plays a good role for the expansion of the universe by adding the cosmological constant referred to as the standard model of cosmology. Let $\bar{M}=(0, \infty) \times{ }_{f} S$ be the FLRW space-time, where S is a 3dimensional Riemannian manifold of constant curvature and f is a scale factor (also known as a warping function). For a perfect fluid with energy density ρ and pressure p, the stress-energy tensor is given by $T=(\rho+p) U^{*} \otimes U^{*}+p g$, where g is a Lorentzian metric and U^{*} is metric dual to an observer field U (a future-pointing timelike unit vector field on $\bar{M})$. The Friedmann equation for the FLRW space-time $-3 \frac{f^{\prime \prime}(t)}{f(t)}=4 \pi(\rho+3 p)$ along an observer field given by a geodesic $\bar{\gamma}=(t, \bar{q})$ for $q \in S$ (cf. [6]) and the equation of state $w=\frac{p}{\rho}<-\frac{1}{3}$ gives a geometrical interpretation for the expanding universe in terms of the Ricci curvature $\operatorname{Ric}\left(\bar{\gamma}^{\prime}(t), \bar{\gamma}^{\prime}(t)\right)=-3 \frac{f^{\prime \prime}(t)}{f(t)}$. So the negative Ricci curvature indicates the expanding universe. The upperbounds of the volume expansion rates in a Lorentzian manifold in [2], [3] and [7] are based on the inverse of the timelike convergent condition $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq 0$ along a timelike geodesic γ which indicates "the gravity attracts on average". So the negative part of Ricci curvature explains the upperbound of the volume expansion rate relative to the space-time of zero curvature.

[^0]From cosmological viewpoints, the FLRW space-time as the model space for volume expansion and contraction rates is considered. By a possible influx of dark matter and gravitational mass into the FLRW space-time nearby an observer field, the FLRW space-time could be deformed to a space-time M which can not be locally no longer homogeneous and isotropic with the nonzero shear tensor along an observer field. In other words, a space-time M is a geometry deviated from the FLRW space-time by such influx of dark matter and gravitational mass. We calculate volume expansion and contraction rates of a spacelike hypersurface of M relative to that of the FLRW space-time in a geometrical way as in [2], [7] whose methods are mainly due to the Riemannian relative volume comparison theories obtained by P. Petersen, G. Wei and C. Sprouse [8], [9] (cf. [4], [10]).

Let M be an n-dimensional Lorentzian manifold and γ_{v} be a unit speed timelike radial geodesic $\gamma_{v}(t)=\exp _{p} t v$ with $\gamma_{v}(0)=p$ and $\gamma_{v}^{\prime}(0)=v$ for all $v \in T_{p} M$. Let $\operatorname{Fut}\left(T_{p} M\right)$ be the set of all future directed timelike vectors $v \in T_{p} M$ such that $\exp _{p}(v)$ is defined for a fixed point $p \in M$. Put

$$
H\left(r_{0}\right)=\left\{v \in \operatorname{Fut}\left(T_{p} M\right) \mid\langle v, v\rangle=-r_{0}^{2}\right\}
$$

for $0<r_{0}<r<\operatorname{cut}_{v}(p)$ and denote by $H^{*}\left(r_{0}\right)$ a compact subset of $H\left(r_{0}\right)$. Consider a geodesic variation along γ_{v} starting from p which produces level hypersurfaces of geodesic sphere $\exp _{p} H^{*}(1)$. Then we get the following differential equation ([3], [4])

$$
\begin{equation*}
\theta^{\prime}+\theta^{2}+s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma_{v}^{\prime}, \gamma_{v}^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

where we denote by $s^{M}, s\left(H_{t}\right)$ the scalar curvature of M at the point $\gamma_{v}(t)$, the scalar curvature of level hypersurface $H_{t}=\exp _{p} H(t)\left(r_{0}<t\right)$, respectively and $\theta(t)$ is the mean curvature of H_{t} along $\gamma_{v}(t)$.

As a generalization of the FLRW space-time, consider a Lorentzian warped product $\bar{M}=(0, \infty) \times_{f} H\left(r_{0}\right)$. Then a unit speed timelike radial geodesic $\bar{\gamma}_{\bar{v}}(t)$ with $\bar{\gamma}_{\bar{v}}(0)=\bar{p}$ and $\bar{\gamma}_{\bar{v}}^{\prime}(0)=\bar{v}$ for each $\bar{v} \in T_{\bar{p}} \bar{M}$ is orthogonal to the hypersurface $H\left(r_{0}\right)$ at time $t=r_{0}$. Since a Jacobi tensor $\bar{A}(t)$ along $\bar{\gamma}_{\bar{v}}(t)$ is given by $\bar{A}(t)=f(t)$ Id with the zero shear tensor (note that the fiber is totally umbilic and the curvature tensor is isotropic along $\left.\bar{\gamma}_{\bar{v}}\right)$, we get the following differential equation along $\bar{\gamma}_{\bar{v}}([4])$

$$
\begin{equation*}
\bar{\theta}^{\prime}+\bar{\theta}^{2}=\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}} \tag{2}
\end{equation*}
$$

and the Ricci curvature along $\bar{\gamma}_{\bar{v}}$ is given by $\operatorname{Ric}\left(\bar{\gamma}_{\bar{v}}^{\prime}, \bar{\gamma}_{\bar{v}}^{\prime}\right)=-\frac{(n-1) f^{\prime \prime}}{f}$.
To compare the volume ratio, we need the following linear isometry (3). Let M be a globally hyperbolic Lorentzian manifold of dimension n and γ be a unit speed timelike radial geodesic orthogonal to the achronal spacelike hypersurface $H_{r_{0}}^{*}=\exp _{p} H^{*}\left(r_{0}\right)$ for a fixed point $p \in M$. Let A, \bar{A} be an $H_{r_{0}}^{*}, H^{*}\left(r_{0}\right)$-Jacobi
tensor along $\gamma_{v}, \bar{\gamma}_{\bar{v}}$, respectively. Assume a linear isometry

$$
\begin{equation*}
\imath: T_{\gamma_{v}\left(r_{0}\right)} H_{r_{0}}^{*} \rightarrow T_{\bar{\gamma} \overline{\bar{v}}\left(r_{0}\right)} H^{*}\left(r_{0}\right) \tag{3}
\end{equation*}
$$

such that $H^{*}\left(r_{0}\right)=\exp _{\bar{\gamma}_{\bar{v}}\left(r_{0}\right)} \circ \imath \circ \exp _{\gamma_{v}\left(r_{0}\right)}^{-1} H_{r_{0}}^{*}$ and $\imath\left(\gamma_{v}^{\prime}\left(r_{0}\right)\right)=\bar{\gamma}_{\bar{v}}^{\prime}\left(r_{0}\right), \imath\left(e_{i}\right)=\bar{e}_{i}$ for an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ of $T_{\gamma\left(r_{0}\right)} H_{r_{0}}^{*}$ and its parallel basis $\left\{E_{1}, E_{2}, \ldots, E_{n-1}\right\}$ along γ_{v} with $E_{i}\left(r_{0}\right)=e_{i}$ for each i. And we can apply the above linear isometry for all directions $v \in T_{p} M$ with $\imath\left(\gamma_{v}^{\prime}\left(r_{0}\right)\right)=\bar{\gamma}_{\bar{v}}^{\prime}\left(r_{0}\right)$. So from now on, we omit the direction v.

Now we can get the following upperbound (4) of the volume expansion rate using the similar calculations as in [2], [7]. Let $d H^{*}(1)$ be the volume element of $H^{*}(1)$. Then the volume element of a level hypersurface $H_{t}^{*}=\exp _{p} H^{*}(t)$ along $\gamma(t)$ is given by $\operatorname{det} A(t) d H^{*}(1)$. Let $\bar{M}=(0, \infty) \times_{f} H\left(r_{0}\right)$ be a Lorentzian warped product with $\operatorname{dim} \bar{M}=n$. Assume that $\theta\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ and $\bar{\theta}(t)=$ $\frac{(n-1) f^{\prime}}{f} \geq 0$. Then we get the upperbound of the volume expansion rate

$$
\begin{equation*}
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \exp \left(\left(R-r_{0}\right) \sqrt{n-1} k_{\gamma}(1, R)^{\frac{1}{2}}\right) \tag{4}
\end{equation*}
$$

where $k_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \tilde{\rho} d t$ with $\tilde{\rho}=\max \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)-\frac{(n-1) f^{\prime \prime}}{f}\right\}$ and $0<r_{0}<R<\min \left\{\operatorname{cut}_{\bar{v}}(\bar{p}), \operatorname{cut}_{v}(p)\right\}$.

As an example of (4), consider a complete and simply connected n-dimensional Lorentzian manifold $\bar{M}(k)$ of constant curvature $k>0$, whose Jacobi tensor along a unit speed timelike geodesic $\bar{\gamma}(t)$ with $\bar{\gamma}(0)=\bar{p}$ and $\bar{\gamma}^{\prime}(0)=\bar{v}$ is given by

$$
\bar{A}(t)=\frac{1}{\sqrt{k}} \sinh \sqrt{k} t \mathrm{Id}
$$

with the initial conditions $\bar{A}(0)=0$ and $\bar{A}^{\prime}(0)=\mathrm{Id}$. Note that the Jacobi equation along $\bar{\gamma}$ is $\bar{x}^{\prime \prime}-k \bar{x}=0$ with $\bar{x}(0)=0$ and $\bar{x}^{\prime}(0)=1$, where $\bar{x}=$ $(\operatorname{det} \bar{A})^{\frac{1}{n-1}}$. Thus for $k_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \tilde{\rho} d t$ with $\tilde{\rho}=\max \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\right.$ $(n-1) k\}$, we have for $0<r_{0}<R$

$$
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq\left(\frac{\sinh \sqrt{k} R}{\sinh \sqrt{k} r_{0}}\right)^{n-1} \exp \left(\left(R-r_{0}\right) \sqrt{n-1} k_{\gamma}(1, R)^{\frac{1}{2}}\right)
$$

which indicates that $\tilde{\rho}=\max \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+(n-1) k\right\}$ does mainly control the upperbound of the volume expansion rate of the level hypersurfaces as follows.

Theorem 1. Let $\bar{M}=(0, \infty) \times_{f} H\left(r_{0}\right)$ be a Lorentzian warped product with $\operatorname{dim} \bar{M}=n$ and $\bar{\gamma}_{\bar{v}}(t)$ be a unit speed timelike radial geodesic with $\bar{\gamma}_{\bar{v}}(0)=\bar{p}$ and $\bar{\gamma}_{\bar{v}}^{\prime}(0)=\bar{v}$ for each $\bar{v} \in T_{\bar{p}} \bar{M}$ orthogonal to the hypersurface $H\left(r_{0}\right)$ at time $t=r_{0}$. Assume that $\theta\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ and $\bar{\theta}(t)=\frac{(n-1) f^{\prime}}{f} \geq 0$. Then we get the upperbound of the volume expansion rate

$$
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \exp \left(\left(R-r_{0}\right) \mu_{\gamma}(1, R)^{\frac{1}{2}}\right)
$$

where $\mu_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu d t$ with $\mu=\max \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\right.$ $\left.\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}\right\}$ and $0<r_{0}<R<\min \left\{\operatorname{cut}_{\bar{v}}(\bar{p}), \operatorname{cut}_{v}(p)\right\}$.

If $-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right) \leq-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)$, then we get the sharper upperbound than (4) from

$$
\begin{aligned}
& \max \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}\right\} \\
\leq & \max \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1) f^{\prime \prime}}{f}\right\} \\
\leq & \max \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)-\frac{(n-1) f^{\prime \prime}}{f}\right\} .
\end{aligned}
$$

The upperbound of the volume expansion rate calculated in [2] using $\bar{\theta}^{\prime}(t)+$ $\bar{\theta}^{2}(t)=0$ with $\bar{\theta}(0)=V>0$ is now given by

$$
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq\left(\frac{V R+1}{V r_{0}+1}\right) \exp \left(\left(R-r_{0}\right) \mu_{\gamma}(1, R)^{\frac{1}{2}}\right)
$$

where $\mu_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu d t$ with $\mu=\max \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)\right\}$.
Finally we obtain the lowerbound of the volume contraction rate as follows.
Theorem 2. Let $\bar{M}=(0, \infty) \times_{f} H\left(r_{0}\right)$ be a Lorentzian warped product with $\operatorname{dim} \bar{M}=n$ and $\bar{\gamma}_{\bar{v}}(t)$ be a unit speed timelike radial geodesic with $\bar{\gamma}_{\bar{v}}(0)=\bar{p}$ and $\bar{\gamma}_{\bar{v}}^{\prime}(0)=\bar{v}$ for each $\bar{v} \in T_{\bar{p}} M$ orthogonal to the hypersurface $H\left(r_{0}\right)$ at time $t=r_{0}$. Assume that $\theta\left(r_{0}\right) \geq \bar{\theta}\left(r_{0}\right)$ and $\theta(t) \geq 0$. Then we get the lowerbound of the volume contraction rate

$$
\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(1, R)^{\frac{1}{2}}\right)\right) \leq \frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}
$$

where $\mu_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R}-\mu d t$ with $\mu=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\right.$ $\left.\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}\right\}$ and $0<r_{0}<R<\min \left\{\operatorname{cut}_{\bar{v}}(\bar{p}), \operatorname{cut}_{v}(p)\right\}$.

Note that $\exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(1, R)^{\frac{1}{2}}\right)\right)$ is less than or equal to 1 . So it could be considered as the contracting term. If $s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \leq$ $-\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}$, then we have

$$
\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \leq \frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}
$$

As in [2], let's denote $\frac{1}{t+\frac{1}{\nabla}}$ by $\bar{\theta}(t)$ which satisfies $\bar{\theta}^{\prime}(t)+\bar{\theta}^{2}(t)=0$ and $\bar{\theta}(0)=V>0$. Then we get by Remark 1 at the end of this paper

$$
\left(\frac{V R+1}{V r_{0}+1}\right) \exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(1, R)^{\frac{1}{2}}\right)\right) \leq \frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)},
$$

where $\mu_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R}-\mu d t$ with $\mu=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)\right\}$.

2. Preliminaries

Definition 1 (cf. [5]). Let γ be a unit-speed geodesic orthogonal to a hypersurface H at $\gamma\left(r_{0}\right)$ with $N_{\gamma\left(r_{0}\right)}=\gamma^{\prime}\left(r_{0}\right)$. A smooth $(1,1)$ tensor field $A:\left(\gamma^{\prime}\right)^{\perp} \rightarrow\left(\gamma^{\prime}\right)^{\perp}$ is called an H-Jacobi tensor along γ if it satisfies

$$
A^{\prime \prime}+R\left(A, \gamma^{\prime}\right) \gamma^{\prime}=0, \quad \operatorname{ker} A \cap \operatorname{ker} A^{\prime}=\{0\}, \quad A\left(r_{0}\right)=\mathrm{Id}, \quad A^{\prime}\left(r_{0}\right)=S_{-N}
$$

where Id is the identity endomorphism of $\left(\gamma^{\prime}\right)^{\perp}$.
Put $B=A^{\prime} A^{-1}$ for an H-Jacobi tensor A along γ, then we have

$$
\begin{equation*}
B^{\prime}=A^{\prime \prime} A^{-1}-A^{\prime} A^{-1} A^{\prime} A^{-1}=-R_{\gamma^{\prime}}-B \circ B \tag{5}
\end{equation*}
$$

where we put $R\left(A, \gamma^{\prime}\right) \gamma^{\prime}=R_{\gamma^{\prime}} A$. The expansion θ can be written as

$$
\begin{equation*}
\theta=\operatorname{tr}(B)=\frac{(\operatorname{det}(A))^{\prime}}{\operatorname{det}(A)} \tag{6}
\end{equation*}
$$

The shape operator $S_{-\gamma^{\prime}(t)}$ of each level hypersurface H_{t} is given by

$$
\begin{equation*}
A^{\prime} A^{-1}(t)=S_{-\gamma^{\prime}(t)}=S_{t} \tag{7}
\end{equation*}
$$

as in [1] and we denote by $\theta(t)=\operatorname{tr} S_{-\gamma^{\prime}(t)}$ the mean curvature of H_{t} along $\gamma(t)$. The shear tensor σ of A along γ is defined by

$$
\sigma=B-\frac{\theta}{n-1} \mathrm{Id} .
$$

Note that a variation tensor field A is a Lagrange tensor (Proposition 1 in [1]). So the vorticity $\frac{1}{2}\left(B-B^{*}\right)$ is zero, where $*$ denotes the adjoint. Taking the trace of (5), we get the Raychaudhuri equation

$$
\begin{equation*}
\theta^{\prime}+\frac{\theta^{2}}{n-1}+\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma^{2}=0 \tag{8}
\end{equation*}
$$

where $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)=\sum_{i=1}^{n-1} g\left(R\left(e_{i}, \gamma^{\prime}\right) \gamma^{\prime}, e_{i}\right)$ for an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{n-1}$ of $\gamma^{\prime \perp}$.

Putting $x=\operatorname{det} A^{\frac{1}{n-1}}$, we see

$$
\begin{equation*}
x^{\prime}=\frac{1}{n-1} x \theta, \quad x^{\prime \prime}=\frac{1}{n-1}\left(\theta^{\prime}+\frac{\theta^{2}}{n-1}\right) x \tag{9}
\end{equation*}
$$

So we obtain the Jacobi equation by (8) and (9)

$$
\begin{equation*}
x^{\prime \prime}+\frac{1}{n-1}\left(\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma^{2}\right) x=0 . \tag{10}
\end{equation*}
$$

3. Proofs

Mathematically we adopt the methods of relative volume comparison theories studied in [8], [9] and [10]. The upperbound (4) can be obtained by using Raychaudhuri equation with the calculations ([2], [7]) for some interval satisfying $\operatorname{Ric}\left(\bar{\gamma}^{\prime}, \bar{\gamma}^{\prime}\right)=-\frac{(n-1) f^{\prime \prime}}{f} \geq \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)$. We introduce here basic methods for the calculations. The Raychaudhuri equation along a geodesic $\bar{\gamma}(t)=(t, \bar{q})$ in $\bar{M}=(0, \infty) \times_{f} H\left(r_{0}\right)$ is given by

$$
\begin{equation*}
\bar{\theta}^{\prime}+\frac{\bar{\theta}^{2}}{n-1}=-\operatorname{Ric}\left(\bar{\gamma}^{\prime}, \bar{\gamma}^{\prime}\right)=\frac{(n-1) f^{\prime \prime}}{f} \tag{11}
\end{equation*}
$$

since we have the $H\left(r_{0}\right)$-Jacobi tensor $\bar{A}(t)=f(t)$ Id and the zero shear tensor $\sigma=0$ along $\bar{\gamma}$. The Raychaudhuri equation along a geodesic $\gamma(t)$ in M is

$$
\begin{equation*}
\theta^{\prime}+\frac{\theta^{2}}{n-1}+\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma^{2}=0 \tag{12}
\end{equation*}
$$

So we have the following inequality

$$
\begin{equation*}
\theta^{\prime}+\frac{\theta^{2}}{n-1} \leq-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \tag{13}
\end{equation*}
$$

since $\operatorname{tr} \sigma^{2}$ is not negative.
Put $\psi(t)=\max \{0, \theta(t)-\bar{\theta}(t)\}$. The subtraction (11) from (13) gives

$$
\begin{equation*}
\psi^{\prime}+\frac{\psi^{2}}{n-1}+\frac{2 \psi \bar{\theta}}{n-1} \leq \tilde{\rho} \tag{14}
\end{equation*}
$$

where $\tilde{\rho}=\max \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)-\frac{(n-1) f^{\prime \prime}}{f}\right\}$. Multiply the inequality (14) by $\psi^{2 p-2}$ and integrate to get

$$
\begin{equation*}
\int_{r_{0}}^{R} \psi^{2 p} d t \leq(n-1)^{p} \int_{r_{0}}^{R} \tilde{\rho}^{p} d t \tag{15}
\end{equation*}
$$

for $p \geq 1$ under the assumption $\theta\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ as in [7].
Since $\theta=\frac{(\operatorname{det}(A))^{\prime}}{\operatorname{det}(A)}$, we see

$$
\log \left(\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}\right)=\int_{r_{0}}^{R} \frac{(\operatorname{det}(A))^{\prime}}{\operatorname{det}(A)} d t=\int_{r_{0}}^{R} \theta d t \leq \int_{r_{0}}^{R} \bar{\theta} d t+\int_{r_{0}}^{R} \psi d t
$$

and

$$
\int_{r_{0}}^{R} \bar{\theta} d t=(n-1) \int_{r_{0}}^{R} \frac{f^{\prime}}{f} d t=\log \left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1}
$$

So we have

$$
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq e^{\int_{r_{0}}^{R} \bar{\theta} d t} e^{\int_{r_{0}}^{R} \psi d t} \leq\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} e^{\int_{r_{0}}^{R} \psi d t}
$$

Using Hölder inequality together with (15) as in [7], we get the upperbound of $\int_{r_{0}}^{R} \psi d t$ of (4).

So the upperbound (4) indicates that if $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq-\frac{(n-1) f^{\prime \prime}}{f}$, then the volume expansion rate $\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}$ is less than equal to $\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1}$. Also the upperbound (4) can be viewed as a generalization of the case with $f(t)=$ $V t+n-1$ so that $\bar{\theta}(t)=(n-1) \frac{f^{\prime}(t)}{f(t)}=(n-1) \frac{V}{V t+n-1}=\frac{n-1}{t+\frac{n-1}{V}}$

$$
\begin{equation*}
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq\left(\frac{V R+n-1}{V r_{0}+n-1}\right)^{n-1} \exp \left(\left(R-r_{0}\right) \sqrt{n-1} k_{\gamma}(1, R)^{\frac{1}{2}}\right) \tag{16}
\end{equation*}
$$

where $k_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \tilde{\rho}(t) d t, \tilde{\rho}(t)=\max \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right\}$ and $V=\bar{\theta}\left(r_{0}\right)=$ $\frac{\left(\operatorname{det} A\left(r_{0}\right)\right)^{\prime}}{\operatorname{det} A\left(r_{0}\right)}>0$ obtained in [2] and [7].

Proof of Theorem 1. Put $\psi(t)=\max \{0, \theta(t)-\bar{\theta}(t)\}$. The subtraction (2) from (1) gives

$$
\begin{equation*}
\psi^{\prime}+\psi^{2}+2 \psi \bar{\theta} \leq \mu, \tag{17}
\end{equation*}
$$

where $\mu=\max \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}\right\}$.
Thus we get

$$
\psi^{\prime}+\psi^{2}+2 \psi \bar{\theta} \leq \tilde{\rho}
$$

Multiply the inequality (17) by $\psi^{2 p-2}$ and integrate to get

$$
\begin{equation*}
\int_{r_{0}}^{R} \psi^{2 p} d t \leq \int_{r_{0}}^{R} \mu^{p} d t \tag{18}
\end{equation*}
$$

for $p \geq 1$ under the assumptions $\bar{\theta}(t) \geq 0$ and $\theta\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$. By Hölder inequality, we get

$$
\begin{aligned}
\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \psi d t & \leq \frac{1}{R-r_{0}}\left(\int_{r_{0}}^{R} \psi^{2 p} d t\right)^{\frac{1}{2 p}}\left(R-r_{0}\right)^{\frac{1}{q}} \\
& \leq \frac{1}{R-r_{0}}\left(\int_{r_{0}}^{R} \mu^{p} d t\right)^{\frac{1}{2 p}}\left(R-r_{0}\right)^{\frac{1}{q}} \\
& \leq\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu^{p} d t\right)^{\frac{1}{2 p}}
\end{aligned}
$$

for $\frac{1}{2 p}+\frac{1}{q}=1(2 p>1)$. Put $\mu_{\gamma}(p, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu^{p} d t$, then

$$
\begin{equation*}
\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \psi d t \leq\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu^{p} d t\right)^{\frac{1}{2 p}}=\left(\mu_{\gamma}(p, R)\right)^{\frac{1}{2 p}} . \tag{19}
\end{equation*}
$$

Then we obtain

$$
\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \leq e^{\int_{r_{0}}^{R} \bar{\theta} d t} e^{\int_{r_{0}}^{R} \psi d t} \leq\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \exp \left(\left(R-r_{0}\right)\left(\mu_{\gamma}(p, R)^{\frac{1}{2 p}}\right)\right)
$$

for $\mu_{\gamma}(p, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu^{p} d t$. Using Hölder inequality, we get

$$
\int_{r_{0}}^{R} \frac{1}{R-r_{0}} \mu d t \leq\left(\int_{r_{0}}^{R} \mu^{p} d t\right)^{\frac{1}{p}}\left(\int_{r_{0}}^{R}\left(\frac{1}{R-r_{0}}\right)^{q} d t\right)^{\frac{1}{q}}=\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu^{p} d t\right)^{\frac{1}{p}}
$$

for $\frac{1}{p}+\frac{1}{q}=1$. Hence for any positive $p>1$,

$$
\begin{equation*}
\mu_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu d t \leq\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \mu^{p} d t\right)^{\frac{1}{p}}=\left(\mu_{\gamma}(p, R)\right)^{\frac{1}{p}} \tag{20}
\end{equation*}
$$

which means that $\mu_{\gamma}(1, R)=\inf \left\{\left.\left(\mu_{\gamma}(p, R)\right)^{\frac{1}{p}} \right\rvert\, p>1\right\}$. So we get the upperbound of $\int_{r_{0}}^{R} \psi d t$ of Theorem 1.
Proof of Theorem 2. Put $\psi(t)=\min \{0, \theta(t)-\bar{\theta}(t)\}$. Then

$$
\begin{equation*}
\theta \geq \bar{\theta}+\psi \tag{21}
\end{equation*}
$$

The subtraction (2) from (1) gives

$$
\psi^{\prime}-\psi^{2}+2 \psi \theta \geq \mu
$$

where $\mu=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}\right\}$ (cf. (17)). Thus we have

$$
\begin{equation*}
-\psi^{\prime}+\psi^{2}-2 \psi \theta \leq-\mu \tag{22}
\end{equation*}
$$

Multiply (22) by $\psi^{2 p-2}$ and integrate to get

$$
\begin{equation*}
-\int_{r_{0}}^{R} \psi^{\prime} \psi^{2 p-2} d t+\int_{r_{0}}^{R} \psi^{2 p} d t-2 \int_{r_{0}}^{R} \psi^{2 p-1} \theta d t \leq \int_{r_{0}}^{R}-\mu \psi^{2 p-2} d t \tag{23}
\end{equation*}
$$

Since $\psi^{2 p-1}=\left(\psi^{2}\right)^{p-1} \psi \leq 0, \theta(t) \geq 0$ and $\psi\left(r_{0}\right)=0$ from the assumptions of Theorem 2, we get

$$
-\int_{r_{0}}^{R} \psi^{\prime} \psi^{2 p-2} d t=-\left.\frac{1}{2 p-1} \psi^{2 p-1}\right|_{r_{0}} ^{R} \geq 0, \quad-2 \int_{r_{0}}^{R} \psi^{2 p-1} \theta d t \geq 0
$$

Hence (23) becomes

$$
\int_{r_{0}}^{R} \psi^{2 p} d t \leq \int_{r_{0}}^{R}-\mu \psi^{2 p-2} d t
$$

By Hölder inequality, we get

$$
\begin{equation*}
\int_{r_{0}}^{R} \psi^{2 p} d t \leq \int_{r_{0}}^{R}-\mu \psi^{2 p-2} d t \leq\left(\int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{p}}\left(\int_{r_{0}}^{R} \psi^{2 p} d t\right)^{1-\frac{1}{p}} \tag{24}
\end{equation*}
$$

Dividing by $\left(\int_{r_{0}}^{R} \psi^{2 p} d t\right)^{1-\frac{1}{p}}$, we get for $p>1$

$$
\begin{equation*}
\left(\int_{r_{0}}^{R} \psi^{2 p} d t\right)^{\frac{1}{p}} \leq\left(\int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{p}} \tag{25}
\end{equation*}
$$

which holds trivially for $p=1$ from (23).
Using Hölder inequality, we see

$$
\frac{1}{R-r_{0}} \int_{r_{0}}^{R}-\psi d t \leq \frac{1}{R-r_{0}}\left(\int_{r_{0}}^{R}(-\psi)^{2 p} d t\right)^{\frac{1}{2 p}}\left(R-r_{0}\right)^{\frac{1}{q}}
$$

for $\frac{1}{2 p}+\frac{1}{q}=1(2 p>1)$. Thus we get

$$
\begin{equation*}
\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \psi d t \geq \frac{-1}{R-r_{0}}\left(\int_{r_{0}}^{R}(-\psi)^{2 p} d t\right)^{\frac{1}{2 p}}\left(R-r_{0}\right)^{\frac{1}{q}} . \tag{26}
\end{equation*}
$$

And we get by (25) and (26)

$$
\begin{aligned}
\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \psi d t & \geq \frac{-1}{R-r_{0}}\left(\int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{2 p}}\left(R-r_{0}\right)^{\frac{1}{q}} \\
& =-\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{2 p}}
\end{aligned}
$$

Put

$$
\mu_{\gamma}(p, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R}(-\mu)^{p} d t
$$

then we have

$$
\begin{equation*}
\frac{1}{R-r_{0}} \int_{r_{0}}^{R} \psi d t \geq-\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{2 p}}=-\left(\mu_{\gamma}(p, R)\right)^{\frac{1}{2 p}} . \tag{27}
\end{equation*}
$$

Note that $\theta=\operatorname{tr}(B)=\frac{(\operatorname{det}(A))^{\prime}}{\operatorname{det}(A)}(6)$ and $\bar{\theta}=\frac{(n-1) f^{\prime}}{f}$ from $\bar{A}=f$ Id. So we have

$$
\begin{equation*}
\int_{r_{0}}^{R} \bar{\theta} d t=(n-1) \int_{r_{0}}^{R} \frac{f^{\prime}}{f} d t=\log \left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \tag{28}
\end{equation*}
$$

Since $\theta \geq \bar{\theta}+\psi(21)$, we see

$$
\log \left(\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}\right)=\int_{r_{0}}^{R} \frac{(\operatorname{det}(A))^{\prime}}{\operatorname{det}(A)} d t=\int_{r_{0}}^{R} \theta d t \geq \int_{r_{0}}^{R} \bar{\theta} d t+\int_{r_{0}}^{R} \psi d t
$$

Thus it follows from (27) and (28) that
(29) $\frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)} \geq e^{\int_{r_{0}}^{R} \bar{\theta} d t} e^{\int_{r_{0}}^{R} \psi d t} \geq\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(p, R)^{\frac{1}{2 p}}\right)\right)$.

Again by Hölder inequality, we get

$$
\begin{aligned}
\int_{r_{0}}^{R} \frac{1}{R-r_{0}}|\mu| d t & \leq\left(\int_{r_{0}}^{R}|\mu|^{p} d t\right)^{\frac{1}{p}}\left(\int_{r_{0}}^{R}\left(\frac{1}{R-r_{0}}\right)^{q} d t\right)^{\frac{1}{q}} \\
& =\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}|\mu|^{p} d t\right)^{\frac{1}{p}}
\end{aligned}
$$

for $\frac{1}{p}+\frac{1}{q}=1$. Hence for $p>1$, we see

$$
\begin{equation*}
-\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{2 p}} \leq-\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}|\mu| d t\right)^{\frac{1}{2}}=-\mu_{\gamma}(1, R)^{\frac{1}{2}}, \tag{30}
\end{equation*}
$$

which means that $-\mu_{\gamma}(1, R)=\sup \left\{\left.\left(-\mu_{\gamma}(p, R)\right)^{\frac{1}{p}} \right\rvert\, p>1\right\}$. The lowerbound of Theorem 2 follows from (29) and (30), that is,

$$
\left(\frac{f(R)}{f\left(r_{0}\right)}\right)^{n-1} \exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(1, R)^{\frac{1}{2}}\right)\right) \leq \frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}
$$

Remark 1. Instead of the equation (2), consider

$$
\begin{equation*}
\bar{\theta}^{\prime}(t)+\bar{\theta}^{2}(t)=0 \tag{31}
\end{equation*}
$$

whose solution is denoted by $\bar{\theta}(t)=\frac{1}{t+\frac{1}{V}}$ with $\bar{\theta}(0)=V>0$ as in [2]. Put $\psi(t)=\min \{0, \theta(t)-\bar{\theta}(t)\}$. By the subtraction (1) from (31), we have

$$
\begin{equation*}
\psi^{\prime}-\psi^{2}+2 \psi \theta \geq \mu, \tag{32}
\end{equation*}
$$

where $\mu=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)\right\}$. Since

$$
\int_{r_{0}}^{R} \bar{\theta} d t=\int_{r_{0}}^{R} \frac{d}{d t}(\log (V t+1)) d t=\log \frac{V R+1}{V r_{0}+1}
$$

we get from the same arguments of the proof of Theorem 2

$$
\left(\frac{V R+1}{V r_{0}+1}\right) \exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(1, R)^{\frac{1}{2}}\right)\right) \leq \frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}
$$

where $\mu_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R}-\mu d t$.
If $-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right) \geq-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)$, then we get

$$
\begin{equation*}
\psi^{\prime}-\psi^{2}+2 \psi \theta \geq \mu \geq \tilde{\mu} \tag{33}
\end{equation*}
$$

where $\left.\tilde{\mu}=\min \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)\right\}$. Thus we get

$$
\left(\int_{r_{0}}^{R}-\psi^{2 p} d t\right)^{\frac{1}{p}} \leq\left(\int_{r_{0}}^{R}(-\mu)^{p} d t\right)^{\frac{1}{p}} \leq\left(\int_{r_{0}}^{R}(-\tilde{\mu})^{p} d t\right)^{\frac{1}{p}}
$$

which leads to

$$
\begin{aligned}
& \left(\frac{V R+1}{V r_{0}+1}\right) \exp \left(\left(R-r_{0}\right)\left(-\tilde{\mu}_{\gamma}(1, R)^{\frac{1}{2}}\right)\right) \\
\leq & \left(\frac{V R+1}{V r_{0}+1}\right) \exp \left(\left(R-r_{0}\right)\left(-\mu_{\gamma}(1, R)^{\frac{1}{2}}\right)\right) \leq \frac{\operatorname{det}(A(R))}{\operatorname{det}\left(A\left(r_{0}\right)\right)}
\end{aligned}
$$

where $\tilde{\mu}_{\gamma}(1, R)=\frac{1}{R-r_{0}} \int_{r_{0}}^{R}-\tilde{\mu} d t$ with $\left.\tilde{\mu}=\min \left\{0,-\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)\right\}$.
Consider

$$
\bar{\theta}^{\prime}+\bar{\theta}^{2}=\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}} \geq \frac{(n-1) f^{\prime \prime}}{f}
$$

and subtract it from (1), we have

$$
\begin{equation*}
\psi^{\prime}-\psi^{2}+2 \psi \theta \geq \mu \tag{34}
\end{equation*}
$$

where $\mu=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1) f^{\prime \prime}}{f}\right\}$. Note that

$$
\begin{aligned}
& \tilde{\mu}=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1)(n-2)\left(f^{\prime}\right)^{2}+(n-1) f f^{\prime \prime}}{f^{2}}\right\} \\
& \leq \mu=\min \left\{0,-\left(s^{M}-s\left(H_{t}\right)+3 \operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)\right)-\frac{(n-1) f^{\prime \prime}}{f}\right\} . \\
& \text { Hence }-\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}|\tilde{\mu}| d t\right)^{\frac{1}{2}} \leq-\left(\frac{1}{R-r_{0}} \int_{r_{0}}^{R}|\mu| d t\right)^{\frac{1}{2}}(\text { see }(30)) .
\end{aligned}
$$

Acknowledgment. This paper was supported by research funds of Kunsan National University.

References

[1] J.-H. Eschenburg and J. O'Sullivan, Jacobi tensors and Ricci curvature, Math. Ann. 252 (1980), no. 1, 1-26.
[2] J. R. Kim, The upperbound of the volume expansion rate in a Lorentzian manifold, Gen. Relativity Gravitation 42 (2010), no. 2, 403-412.
[3] \qquad , Erratum to The upperbound of the volume expansion rate in a Lorentzian manifold, Gen. Relativity Gravitation 42 (2010), no. 12, 2981-2982.
[4] , Relative Lorentzian volume comparison with integral Ricci and scalar curvature bound, J. Geom. Phys. 61 (2011), no. 6, 1061-1069.
[5] D. N. Kupeli, On conjugate and focal points in semi-Riemannian geometry, Math. Z. 198 (1988), no. 4, 569-589.
[6] B. O'Neil, Semi-Riemannian Geometry with applications to Relativity, Pure Appl. Math., Academic Press, New York, 1983.
[7] S.-H. Paeng, Volume expansion rate of the Lorentzian manifold based on integral Ricci curvature over a timelike geodesic, J. Geom. Phys. 57 (2007), no. 6, 1499-1503.
[8] P. Petersen and C. Sprouse, Integral curvature bounds, distance estimates and applications, J. Differential Geom. 50 (1998), no. 2, 269-298.
[9] P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1031-1045.
[10] J.-G. Yun, Volume comparison for Lorentzian warped products with integral curvature bounds, J. Geom. Phys. 57 (2007), no. 3, 903-912.

Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail address: kimjr0@kunsan.ac.kr

[^0]: Received July 6, 2015; Revised August 5, 2015.
 2010 Mathematics Subject Classification. 53C50.
 Key words and phrases. achronal spacelike hypersurface, Jacobi tensor, volume expansion, Raychaudhuri equation, mean curvature, FLRW space-time.

