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PSEUDOHERMITIAN LEGENDRE SURFACES OF

SASAKIAN SPACE FORMS

Ji-Eun Lee

Abstract. From the point of view of pseudohermitian geometry, we

classify Legendre surfaces of Sasakian space forms with non-minimal Ĉ-
parallel mean curvature vector field for the Tanaka-Webster connection.

1. Introduction

A Legendre submanifold in contact manifolds is one of important subjects
in contact geometry and the geometry of submanifolds. In Sasakian manifolds
there exist no Legendre submanifolds with parallel mean curvature vector other
than the minimal ones (cf. [15]). If the mean curvature vector field satisfies
DH ||ξ for the characteristic vector field ξ, then it is said to be C-parallel, where
D is the normal connection. In [1], C. Baikoussis and D. E. Blair treated C-
parallel Legendre surfaces of Sasakian space forms (with respect to Levi-Civita
connection). In [10] we studied C-parallel mean curvature vector fields along
slant curves in Sasakian 3-manifolds.

On the other hand, for a given contact form we have two compatible struc-
tures: one is a Riemannian structure (or metric) and the other is a pseudo-
hermitian structures (or (almost) CR-structure). In pseudohermitian geometry
we use Tanaka-Webster connection as a canonical connection in stead of Levi-
Civita connection. In [9], we defined pseudohermitian parallel mean curvature
vector field in 3-dimensional contact Riemannian manifolds for the Tanaka-
Webster connection in normal bundle. Thus, we found that a Legendre curve
in a 3-dimensional Sasakian manifold satisfying pseudohermitian parallel mean
curvature vector field is a pseudohermitian circle.

In this paper, we find that there exists no Legendre surface with pseudo-
hermitian parallel mean curvature vector field other than the minimal ones in
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5-dimensional Sasakian space forms M5 for the Tanaka-Webster connection ∇̂.
So, we study Legendre surfaces in 5-dimensional Sasakian space forms M5 with
Ĉ-parallel mean curvature vector field H for the Tanaka-Webster connection

∇̂.
Let H be the mean curvature vector of a Legendre surface N isometrically

immersed in M5. The main purpose of the present paper is to prove the
following result. A vector field V normal to N is said to be Ĉ-parallel for
the Tanaka-Webster connection ∇̂ if D̂XV ||ξ for any vector field X tangent to
N . If N is a Legendre surface in the 5-dimensional Sasakian space form M5

and mean curvature vector H is Ĉ-parallel for the Tanaka-Webster connection
∇̂, then N is minimal, or N is locally the Riemnanian product of two curves.
Moreover, if the Sasakian space form M5 is the unit sphere S5 ⊂ E6, then we
give 2-parameter family of the Legendre surface N in S5 in Theorem 4.3.

2. Preliminaries

2.1. Contact Riemannian manifolds

A (2n+1)-dimensional smooth manifold M2n+1 is called a contact manifold,
if it admits a global 1-form η such that η ∧ (dη)n 6= 0 everywhere on M2n+1.
This 1-form η is called the contact form on M2n+1.

Given a contact form η, there exist a unique vector field ξ, the characteristic
vector field, which satisfies η(ξ) = 1 and dη(ξ,X) = 0 for any vector field X .

Moreover, there exist an associated Riemannian metric g and a (1, 1)-type
tensor field ϕ such that

(1) η(X) = g(X, ξ), dη(X,Y ) = g(X,ϕY ), ϕ2X = −X + η(X)ξ,

where X and Y are vector fields on M2n+1. From (1), it follows that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

A Riemannian manifold M2n+1 equipped with the structure tensors (η, ξ, ϕ, g)
satisfying (1) is said to be a contact Riemannian manifold. We denote it by
M = (M2n+1, η; ξ, ϕ, g). Given a contact Riemannian manifold M , we define
an endomorphism field h by h = 1

2Lξϕ, where Lξ denotes the Lie derivative in
the characteristic direction ξ. The endomorphism field h is called the structural
operator of (M, η;ϕ, ξ, g).

Then we may observe that h is symmetric and satisfies

(2)
hξ = 0, hϕ = −ϕh,

∇Xξ = −ϕX − ϕhX,

where ∇ is Levi-Civita connection of (M, g).
For a contact Riemannian manifold M , one may define naturally an almost

complex structure J on M × R by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),
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where X is a vector field tangent to M , t the coordinate of R and f a function
on M × R. If the almost complex structure J is integrable, then the contact
Riemannian manifold M is said to be normal or Sasakian. It is known that a
contact metric manifold M is normal if and only if M satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ.
A Sasakian manifold is also characterized by the condition

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X

for all vector fields X and Y on the manifold M .
We define the Riemannian curvature tensor R by

R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z

for all vector fields X,Y, Z on M .
Let (M ; η, ξ, ϕ, g) be a Sasakian manifold. Then M is called a space of

constant holomorphic sectional curvature k if M satisfies

g(R(X,ϕX)ϕX,X) = k

for any unit vector field X ⊥ ξ. A complete and simply connected Sasakian
space of constant holomorphic sectional curvature is called a Sasakian space

form. Tanno ([12]) classified Sasakian space forms.
The curvature tensor of a Sasakian space form M(k) is given by

R(X,Y )Z =
k + 3

4
(g(Y, Z)X − g(X,Z)Y )

+
k − 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ(3)

− g(Y, Z)η(X)ξ + g(Z,ϕY )ϕX − g(Z,ϕX)ϕY + 2g(X,ϕY )ϕZ}.
Let Nm be a submanifold in a contact manifold M2n+1. If η restricted to

Nm vanishes, then Nm is called an integral submanifold. In particular, when
m = n, it is called a Legendre submanifold.

2.2. Pseudohermitian structure and Tanaka-Webster connection

For a contact Riemannian manifold M = (M2n+1; η, ξ, ϕ, g), the tangent
space TpM of M at a point p ∈ M can be decomposed into the direct sum
TpM = Dp ⊕ {ξ}p, with Dp = {v ∈ TpM | η(v) = 0}. Then D : p →
Dp defines a 2n-dimensional distribution orthogonal to ξ, which is called the
contact distribution. We see that the restriction J = ϕ|D of ϕ to D defines an
almost complex structure on D. Then the associated almost CR-structure of
the contact Riemannian manifold M is given by the holomorphic subbundle

H = {X − iJX | X ∈ D}
of the complexification TMC of the tangent bundle TM . Then we see that
each fiber Hp is of complex dimension n, H∩ H̄ = {0}, and CD = H⊕ H̄. We
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say that the associated CR − structure is integrable if [H,H] ⊂ H. For H
we define the Levi form by

L : D ×D → F(M), L(X,Y ) = −dη(X, JY ),

where F(M) denotes the algebra of differential functions on M . Then we see
that the Levi form is Hermitian and positive definite. We call the pair (η, L)
a contact strongly pseudo-convex, pseudohermitian structure on M . Now, we
review the Tanaka-Webster connection ([11], [14]) on a contact strongly pseudo-
convex CR-manifold M = (M ; η, L) with the associated contact Riemannian

structure (η, ξ, ϕ, g). The Tanaka-Webster connection ∇̂ is defined by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X,Y on M . Together with (2), ∇̂ may be rewritten as

(4) ∇̂XY = ∇XY + P (X,Y ),

where

(5) P (X,Y ) = η(X)ϕY + η(Y )(ϕX + ϕhX)− g(ϕX + ϕhX, Y )ξ.

We see that the Tanaka-Webster connection ∇̂ has the torsion

(6) T̂ (X,Y ) = 2g(X,ϕY )ξ + η(Y )ϕhX − η(X)ϕhY.

In particular, the K-contact manifold (5) and the above equation (6) are re-
duced to

(7)
P (X,Y ) = η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,

T̂ (X,Y ) = 2g(X,ϕY )ξ.

Furthermore, it was proved in ([13]) that:

Proposition 2.1. The Tanaka-Webster connection ∇̂ on a contact Riemann-

ian manifold M = (M2n+1; η, ξ, ϕ, g) with the associated (integrable) CR-

structure is the unique linear connection satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;

(ii) ∇̂g = 0, ∇̂ϕ = 0;

(iii-1) T̂ (X,Y ) = −η([X,Y ])ξ, X, Y ∈ D;

(iii-2) T̂ (ξ, ϕY ) = −ϕT̂ (ξ, Y ), Y ∈ D.

We define the pseudohermitian curvature tensor R of ∇̂ (or the Tanaka-
Webster curvature tensor) on a contact strongly pseudo-convex CR manifold
by

(8) R̂(X,Y )Z = ∇̂X(∇̂Y Z)− ∇̂Y (∇̂XZ)− ∇̂[X,Y ]Z

for all vector fields X,Y, Z in M . Actually, for Sasakian space forms M2n+1(k)

the holomorphic sectional curvature for k̂ is k̂ = k + 3 (see [4]).
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Definition. If γ is a curve in a contact Riemannian manifold M which is
parametrized by arc-length s, we say that γ is a Frenet curve of osculating
order r when there exist orthonormal vector fields E1, E2, . . . , Er, along γ such
that

γ̇ = E1, ∇̂γ̇E1 = κ̂1E2, ∇̂γ̇E2 = −κ̂1E1 + κ̂2E3, . . . ,

∇̂γ̇Er−1 = −κ̂r−2Er−2 + κ̂r−1Er, ∇̂γ̇Er = −κ̂r−1Er−1,

where κ̂1, κ̂2, . . . , κ̂r−1 are positive c∞ functions of s. κ̂j is called the j-th
pseudohermitian curvature of γ. A geodesic is a Frenet curve of osculating
order 1 and a pseudohermitian circle is a Frenet curve of osculating order 2
with κ̂1 a constant. A pseudohermitian helix of order r is a Frenet curve of
osculating order r, such that κ̂1, κ̂2, . . . , κ̂r−1 are constants.

3. Legendre surfaces in Sasakian space forms

For a contact manifold M2n+1, let f : Nm → M2n+1 be an isometric im-
mersion. Then we have the basic formulas:

(9) ∇̂f
XY = ∇̂h

XY + σ̂(X,Y ) and ∇̂f
XV = −ŜV X + D̂XV,

where X,Y ∈ TNm, V ∈ T⊥Nm. σ̂, Ŝ and D̂ are the second fundamental
form, the shape operator and the normal connection for ∇̂. The first formula
is called the Gauss formula and the second formula is called the Weingarten
formula for the Tanaka-Webster connection ∇̂. The pseudohermitian mean cur-
vature vector field Ĥ is given by Ĥ = 1

m
trσ̂. If Ĥ = 0 at any point of Nm,

then Nm is called pseudohermitian minimal.
From the equation (9) we can find the relation:

(10) g(σ̂(X,Y ), V ) = g(ŜV X,Y ) = g(ŜV Y,X).

Let Nn be a Legendre submanifold of a Sasakian manifold M2n+1 and let
ei(i = 1, . . . , n) be an orthonormal frame field along Nn such that ei’s are
tangent to Nn, ϕe1 = en+1, . . . , ϕen = e2n, ξ = e2n+1. By the equation (7),
we can see that

(11) P (X,Y ) = 0 = T̂ (X,Y )

for X,Y ∈ TN , and σ̂ = σ. Using the equation (10) we get ŜV X = SV X, for
V ∈ T⊥N,X ∈ TN . Moreover, we have

(12) SϕY X = −ϕσ(X,Y ) = SϕXY, Sξ = 0.

Then by using a straightforward computation the equations of Gauss and Co-
dazzi of Legrendre submanifolds for Tanaka-Webster connection are given:

g(R̂h(X,Y )Z,W ) = g(R̂(X,Y )Z,W ) + g([SϕZ, SϕW ]X,Y ),(13)

(∇̂Xσ)(Y, Z) = (∇̂Y σ)(X,Z).(14)
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The sectional curvature K(X,Y ) of Nn determined by an orthonormal pair
X,Y is given by

(15) K(X,Y ) =
k + 3

4
+ Σn

α=1{g(SαX,X)g(SαY, Y )− g(SαX,Y )2}.

From the equation (11) we have:

Lemma 3.1. Let Nn be a Legendre submanifold of a Sasakian manifold M2n+1.

The pseudohermitian mean curvature vector Ĥ is equal to the mean curvature

vector H (i.e., Ĥ = H). Moreover, Nn is pseudohermitian minimal if and only

if it is minimal.

First of all, for a Legendre surface N in a Sasakian space form M5 we
consider parallel mean curvature vector fields. LetX1, X2 be a local orthonomal

basis of vector fields on N such that H =
trSϕX1

2 ϕX1. Using the equations (10)
and (12), if

(16) SϕX1
=

[

a b

b c

]

, then SϕX2
=

[

b c

c −b

]

,

where a, b, c are functions on M. Let Xi(i = 1, . . . , 5) be an orthonormal frame
field along N2 such that X1, X2 are tangent to N2, ϕX1 = X3, ϕX2 = X4,
ξ = X5, then we denote by {ωi}, i = 1, . . . , 5, the dual frame field of the frame

{Xi}. Thus we get ∇̂Xi = Σ5
i=1ω

j
iXj . Hence we have

(17) ∇̂Xi
H = Xi(

trSϕX1

2
)ϕX1 +

trSϕX1

2
(ω2

1(Xi)ϕX2 + ϕσ(Xi, X1)).

From the above equation, we find:

Proposition 3.2. Let N be a Legendre surface in a Sasakian space form M5.

There does not exist non-minimal pseudohermitian parallel mean curvature vec-

tor field for the Tanaka-Webster connection ∇̂.

Now, we consider Ĉ-parallel mean curvature vector field as following.

Definition. A vector field V normal to N is said to be Ĉ-parallel for Tanaka-
Webster connection ∇̂ if D̂XV ||ξ for the normal connection D̂ of ∇̂ and any
vector field X tangent to M.

From the above Definition if we compute Ĉ-parallel mean curvature vector
field (i.e., D̂Xi

H ||ξ, i = 1, 2) on Legendre surfaces in Sasakian space forms M5

then we have Xi(trSϕX1
) = 0 and (trSϕX1

)ω2
1(Xi) = 0. If trSϕX1

= 0, then N

is minimal. If trSϕX1
= constant 6= 0, then ω2

1 = 0 and N is flat. Hence we
have:

Lemma 3.3. Let N be a Legendre surface in a Sasakian space form M5.

If the mean curvature vector field H of N is Ĉ-parallel for Tanaka-Webster

connection ∇̂, then N is minimal or N is flat.
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Corollary 3.4. Let N be a Legendre surface in a Sasakian space form M5. If

N is flat, then the shape operators SϕX1
and SϕX2

are parallel.

Proof. From the Codazzi equation (14),

(18) a2 = b1, b2 = c1, c2 = −b1,

where Xif = fi for any function f on N . So a + c is a constant. Since N is
flat, using the equation (15) we get k+3

4 + ac− 2b2− c2 = 0. Differentiating the
above equation for Xi, i = 1, 2, then we have

(19) cai − 4bbi + (a− 2c)ci = 0, i = 1, 2.

From (18) we get

(3c− a)c1 − 4bc2 = 0, (3c− a)c2 + 4bc1 = 0.

The determinant of this system is D = (3c − a)2 + 16b2. When D 6= 0, c is a
constant. Since a + c is a constant, a is a constant. Moreover, from (18), b is
a constant. If D = 0, we have b = 0 and a = 3c = constant. Therefore we can
see that the shape operators SϕX1

and SϕX2
are parallel. �

Remark 3.5. If D̂XV = 0 for the normal connection D̂ and any vector field X

tangent to M, then a vector field V normal to N is said to be D̂-parallel for the

Tanaka-Webster connection ∇̂. From the equation (17), we have g(∇̂Xi
H, ξ) =

0. Therefore N has Ĉ-parallel mean curvature vector field if and only if N has
D̂-parallel mean curvature vector field.

In [1], C. Baikoussis and D. E. Blair treated C-parallel Legendre surfaces of
Sasakian space forms (with respect to Levi-Civita connection). In fact, we can
see the following:

Corollary 3.6. Let N be a Legendre surface in a Sasakian space form M5.

N has C-parallel mean curvature vector field for the Levi-Civita connection ∇
if and only if N has Ĉ-parallel mean curvature vector field for the Tanaka-

Webster connection ∇̂.

From Lemma 3.3, if N is not minimal, then N is flat. In this case, after
rotating the basis {X1, X2} through a constant angle, using the equations (10)
and (12), we may assume that the weingarten maps are

(20) S1 =

[

a 0
0 c

]

, and S2 =

[

0 c

c d

]

,

where Si = SϕXi
, i = 1, 2, and X1 = cos θX1 + sin θX2, X2 = − sin θX1 +

cos θX2. Since ∇̂h
Xi

Xj = ∇h
Xi

Xj = 0 we have ∇̂h

Xi
Xj = ∇h

Xi
Xj = 0, and from

k̂ = k + 3, we have

(21)
k̂

4
+ ac− c2 = 0.
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We relabel Xi and ϕXi by Xi and ϕXi, i = 1, 2, respectively. From Proposition
2.1 and (9),

∇̂X1
X1 = aϕX1, ∇̂X1

X2 = ∇̂X2
X1 = cϕX2,

∇̂X2
X2 = cϕX1 + dϕX2, ∇̂X1

ϕX1 = −aX1, ∇̂X1
ϕX2 = −cX2,(22)

∇̂X2
ϕX1 = −cX2, ∇̂X2

ϕX2 = −cX1 − dX2, ∇̂X1
ξ = ∇̂X2

ξ = 0.

Let X1 = E1. From (22) we have

∇̂E1
E1 = ∇E1

E1 = aϕE1 = κ1E2,

where E2 = εϕE1, κ̂1 = κ1 = εa, and ε = ±1 according to a > 0 or a < 0.

∇̂E1
E2 = −aX1 = −κ1E1.

Thus κ̂2 = 0 and X1-curve is a pseudohermitian circle of M5. If a = 0, the
X1-curve is a geodesic of M5.

Now we put X2 = E1. From (22) we have

∇̂E1
E1 = ∇E1

E1 = cϕX1 + dϕX2 = κ̂1E2,

where E2 = cϕX1+dϕX2√
c2+d2

, κ̂1 =
√
c2 + d2. If c2 + d2 = 0 (i.e., c = d = 0), then

the X2-curve is a geodesic. If c2 + d2 6= 0, then

∇̂E1
E2 =

1√
c2 + d2

{−cdX1 − (c2 + d2)X2} = −κ̂1E1 + κ̂2E3,

where E3 = εX1, κ̂2 = ε cd√
c2+d2

and ε = ∓1 according to cd > 0 or cd < 0.

If cd = 0 and c2+d2 6= 0, then the X2-curve is a pseudohermitian circle in M5.
If cd 6= 0, then ∇̂E1

E3 = −κ̂2E2 + κ̂3E4, where E4 = cϕX2−dϕX1√
c2+d2

and κ̂3 =

c2√
c2+d2

.

∇̂E1
E4 = − c2√

c2 + d2
X1 = −κ̂3E3,

since c 6= 0 and κ̂4 = 0, the X2-curve is a pseudohermitian helix of order 4.
Hence we have:

Theorem 3.7. Let N be a Legendre surface of the Sasakian space form M5. If

the mean curvature vector H of N is Ĉ-parallel for Tanaka-Webster connection

∇̂ then N is minimal, or N is a locally product of two curves as follows:
(i) two geodesics, or

(ii) two pseudohermitian circles or a pseudohermitian circle and a geodesic,

or

(iii) a pseudohermitian helix of order 4 and a pseudohermitian circle or a

geodesic.

In [1], they studied Legendre surfaces of Sasakian space form M5 satisfying
C-parallel mean curvature vector field (with respect to the Levi-Civita connec-
tion). In fact, for a Legendre surface N in a Sasakian space form M5, N has
C-parallel mean curvature vector field for the Levi-Civita connection ∇ if and
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only if N has Ĉ-parallel mean curvature vector field for the Tanaka-Webster
connection ∇̂. In Theorem 3.7, we construct Legendre surfaces N in Sasakian
space forms satisfying Ĉ-parallel mean curvature vector field from the point of
view of pseudohermitian geometry. We can see that it is very different from
[1].

4. Legendre surfaces in S
5

In this section, we particularly consider the case that the Sasakian space
form M5 is the unit sphere S5. Let

(23) x : N → S5 ⊂ E6

be an isometric immersion of a Legendre surface N in S5.
From Lemma 3.3, if N is not minimal, then N is flat. In this case the second

fundamental form σ of N in E6 is given as follows:

σ(X1, X1) = aϕX1 − x,

σ(X1, X2) = cϕX2,(24)

σ(X2, X2) = cϕX1 + dϕX2 − x,

where x is the position vector of N in E6. From (22) and (24) we get

∇̂′
X1

X1 = aϕX1 − x, ∇̂′
X1

ϕX1 = −aX1,

∇̂′
X2

X1 = cϕX2, ∇̂′
Xi

x = Xi,(25)

∇̂′
X2

X2 = cϕX1 + dϕX2 − x, ∇̂′
X2

ϕX1 = −cX2,

∇̂′
X2

ϕX2 = −cX1 − dX2,

where ∇̂′ is the connection of E6.
Let X1 = E1. From (25) we have

∇̂′
E1

E1 = aϕX1 − x = κ̂1E2,

where E2 = aϕX1−x√
a2+1

and κ̂1 =
√
a2 + 1.

∇̂′
E1

E2 = −
√

a2 + 1X1 = −κ̂1E1.

Thus κ̂2 = 0 and X1-curve is a pseudohermitian circle in E6.
Now we put X2 = E1. From (25) we have

∇̂′
E1

E1 = cϕX1 + dϕX2 − x = κ̂1E2,

where E2 = cϕX1+dϕX2−x√
c2+d2+1

, κ̂1 =
√
c2 + d2 + 1.

∇̂′
E1

E2 = −
√

c2 + d2 + 1X2 −
cd√

c2 + d2 + 1
X1 = −κ̂1E1 + κ̂2E3,

where E3 = εX1, and κ̂2 = −ε cd√
c2+d2+1

, ε = ∓1 according to cd > 0 or cd < 0.

If cd = 0, then the X2-curve is a pseudohermitian circle in E6. If cd 6= 0,
then the X2-curve is a pseudohermitian helix of order 4 in E6. Hence we have:
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Proposition 4.1. Let N be a Legendre surface of S5 in E6 with Ĉ-parallel

mean curvature vector H for ∇̂. Then N is minimal in S5, or locally the product

of two curves in E6;
(i) two pseudohermitian circles or

(ii) a pseudohermitian circle and a pseudohermitian helix of order 4.

On Legendre surface N we may choose local coordinates such that the im-
mersion (23) is x = x(u, v) with xu = X1 and xv = X2. Then from (21) we
have 1 + ac− c2 = 0 and from (25), we find

(i) xuuu + (a2 + 1)xu = 0,

(ii) xuuv + c2xv = 0,(26)

(iii) xuvv + c2xu + cdxv = 0.

We will find the general solution of the system (26). First of all, we solve
the following ordinary differential equation.

Lemma 4.2. The general solution of the ordinary differential equation

f ′′′ + (a2 + 1)f ′ = 0

is

f(t) = c1 cos
√

a2 + 1t+ c2 sin
√

a2 + 1t+ c3,

where c1, c2, c3 and a are constants.

Theorem 4.3. Let x : N → S5 ⊂ E6 be an immersion of a Legendre surface

N into S5, with Ĉ-parallel mean curvature vector field H for ∇̂. If N is not

minimal in S5, then N lies in E4 ⊂ E6 and the position vector x = x(u, v) of

N in E6 is given by

x =
1

√

λ1(λ1 + λ2)
cos(λ1v + u)e1 +

1
√

λ2(λ1 + λ2)
cos(λ2v − u)e2

+
1

√

λ1(λ1 + λ2)
sin(λ1v + u)e3 +

1
√

λ2(λ1 + λ2)
sin(λ2v − u)e4,(27)

where λ1 = 1
2 (
√
4 + d2 + d), λ2 = 1

2 (
√
4 + d2 − d), d = constant and {ei},

i = 1, . . . , 4, is an orthonormal basis of E4 in E6.

Proof. From the assumption the position vector x = x(u, v) of N in E6 satis-
fying the system (26) is given by

(28) x = A1(v) cos
√

a2 + 1u+A2(v) sin
√

a2 + 1u+A3,

where Ai, i = 1, 2, 3, are E6-valued smooth functions of the variable v. From
the Second equation of (26) and (28), we get a = 0, c2 = 1 and

(29) x = A1(v) cos u+A2(v) sin u+A3,

where A3 is a constant.
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We may assume that c = 1 without loss of generality. From the third
equation of (26) and (29), we have

A′′
1 (v) +A1(v)− dA′

2(v) = 0,(30)

A′′
2 (v) +A2(v) + dA′

1(v) = 0.

If d = 0, the general solution of these equations are

A1(v) = B1 cos v +B2 sin v,

A2(v) = C1 cos v + C2 sin v,

where Bi, Ci, i = 1, 2, are constant vectors in E6.
If d 6= 0, from (30) we have

(31) A
(iv)
i (v) + (d2 + 2)A′′

i (v) +Ai(v) = 0, i = 1, 2.

We can find the following general solution of these differential equations:

A1(v) = B1 cosλ1v +B2 sinλ1v +B3 cosλ2v +B4 sinλ2v,(32)

A2(v) = C1 cosλ1v + C2 sinλ1v + C3 cosλ2v + C4 sinλ2v,

where λ1 = 1
2 (
√
4 + d2 + d), λ2 = 1

2 (
√
4 + d2 − d) and Bi, Ci, i = 1, . . . , 4, are

constant vectors in E6.
Substituting (32) into (30) and using that cosλ1v, sinλ1v, cosλ2v, sinλ2v

are linearly independent, we get

B1 = −C2, B2 = C1, B3 = C4, B4 = −C3.

Substituting (32) into (28), the position vector x of N is given by (27), where
e1, . . . , e4 are the constant vectors in E4 ⊂ E6 and

e1 =
√

λ1(λ1 + λ2)B1, e2 =
√

λ2(λ1 + λ2)B3,

e3 =
√

λ1(λ1 + λ2)B2, e4 =
√

λ2(λ1 + λ2)B4.

Therefore we get at the point x(0.0)

x =
1

√

λ1(λ1 + λ2)
e1 +

1
√

λ2(λ1 + λ2)
e2,

xu =
1

√

λ1(λ1 + λ2)
e3 −

1
√

λ2(λ1 + λ2)
e4,

xv =

√

λ1

λ1 + λ2
e3 +

√

λ2

λ1 + λ2
e4,(33)

xuu = − 1
√

λ1(λ1 + λ2)
e1 −

1
√

λ2(λ1 + λ2)
e2,

xvv = −λ1

√

λ1

λ1 + λ2
e1 − λ2

√

λ2

λ1 + λ2
e2,

xuv = − λ1
√

λ1(λ1 + λ2)
e1 +

λ2
√

λ2(λ1 + λ2)
e2,
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xuvv = −λ1

√

λ1

λ1 + λ2
e3 + λ2

√

λ2

λ1 + λ2
e4.

On the other hand, form (25) we get

(34) g(x, x) = g(xu, xu) = g(xv, xv) = 1, g(x, xu) = g(x, xv) = g(xu, xv) = 0.

Moreover,

g(x, xuu) = g(x, xvv) = g(xu, xuvv) = −g(xuv, xuv) = −1,

g(xuvv, xv) = −g(xvv, xuv) = −d, g(xvv, xvv) = 2 + d2,(35)

g(xuvv, xuvv) = 1 + d2,

and all others are zero.
From (33) and (34), we have A3 = 0 and finally we obtain the position vector

(27). Also, combining (33) with the above equations (34) and (35), we can see
that g(ei, ej) = δij . �

Remark 4.4. In [1], they found that if Legendre surfaces in Sasakian space
forms with C-parallel mean curvature vector field (for Levi-Civita connection
∇) are not minimal, then N lies fully in E6.
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