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CERTAIN SUMMATION FORMULAS FOR HUMBERT’S

DOUBLE HYPERGEOMETRIC SERIES Ψ2 AND Φ2

Junesang Choi and Arjun Kumar Rathie

Abstract. The main objective of this paper is to establish certain ex-
plicit expressions for the Humbert functions

Φ2(a, a+ i ; c ; x, −x) and Ψ2(a ; c, c+ i ; x, −x)

for i = 0, ±1, ±2, . . . , ±5. Several new and known summation formulas
for Φ2 and Ψ2 are considered as special cases of our main identities.

1. Introduction and preliminaries

Throughout this paper, C and Z
−
0 denote the sets of complex numbers and

nonpositive integers, respectively. We start with recalling two Humbert’s func-
tions defined as follows (see, e.g., [1, 2, 3, 6, 10]):

(1) Ψ2(a ; b, c ; x, y) =
∞
∑

n=0

∞
∑

k=0

(a)n+k

(b)n (c)k

xn yk

n! k!

and

(2) Φ2(a, b; c ; x, y) =
∞
∑

n=0

∞
∑

k=0

(a)n (b)k
(c)n+k

xn yk

n! k!
.

It is noted that the double series (1) and (2) converge absolutely at any x,
y ∈ C.

Only a few relations between these Humbert’s functions and hypergeometric
or generalized hypergeometric series are available in the literature. We recall
here the following ones (see, e.g., [2, 3, 10]):

(3) Ψ2(γ ; γ, γ ; x, y) = ex+y
0F1

[

;

γ ;
x y

]

;
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(4) Ψ2(α ; γ, γ ; x, −x) = 2F3

[

1
2α,

1
2α+ 1

2 ;

γ, 1
2γ,

1
2γ + 1

2 ;
− x2

]

;

(5) Ψ2(a ; b, c ; x, x) = 3F3

[

a, 1
2 (c+ b− 1), 1

2 (c+ b) ;

b, c, b+ c− 1 ;
4x

]

;

(6) Φ2(α, γ − α; γ ; x, y) = ey 1F1

[

α ;

γ ;
x− y

]

;

(7) Φ2(β, β
′; γ ; x, x) = 1F1

[

β + β′ ;

γ ;
x

]

;

(8) Φ2(a ; a, c ; x, −x) = 1F2

[

a ;

1
2c,

1
2c+

1
2 ;

x2

4

]

.

Recently, Manako [5] obtained the following identity: For b, c ∈ C \Z−
0 and

|x| 6= 0,

(9) Ψ2(a ; b, c ; x, y) =

∞
∑

k=0

(a)k
(b)k

2F1

[

−k, −k − b+ 1 ;

c ;

y

x

]

xk

k!
,

whose several special cases are also considered.
Very recently, Rathie [8] presented the following identity:

(10) Φ2(a, b; c ; x, y) =

∞
∑

m=0

(a)m
(c)m

2F1

[

−m, b ;

1− a−m ;

y

x

]

xm

m!
.

Here we consider some special cases of (9) and (10). If we take y = x in (9)
and use Gauss’s summation theorem (see, e.g., [7, p. 49] and [9, p. 64]):

(11)
2F1

[

a, b ;

c ;
1

]

=
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
(

ℜ(c− a− b) > 0; c ∈ C \ Z−
0

)

,

after some simplification, we get the result (5).
Setting c = b, y = −x in (9) and making use of the following Kummer’s

summation theorem (see, e.g., [7, p. 68]):

(12)
2F1

[

a, b ;

1 + a− b ;
− 1

]

=
Γ
(

1 + 1
2a

)

Γ(1 + a− b)

Γ(1 + a) Γ
(

1 + 1
2a− b

)

(

ℜ(b) < 1; 1 + a− b ∈ C \ Z−
0

)

,

we obtain the result (4).
If we take y = x in (10) and use Gauss’s summation theorem (11), we get

the result (7).
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Setting b = a, y = −x in (10) and using Kummer’s summation theorem
(12), we obtain the result (8).

Here, in this paper, we aim at finding certain explicit expressions for the
Humbert functions

Φ2(a, a+ i ; c ; x, −x) and Ψ2(a ; c, c+ i ; x, −x)

for i = 0, ±1, ±2, . . . , ±5. The results are derived, with the help of (9) and
(10), by using the following generalizations of the Kummer’s summation theo-
rem given earlier by Lavoie et al. [4]:

(13)

2F1

[

a, b ;

1 + a− b+ i ;
− 1

]

=
Γ( 1

2 )Γ(1−b) Γ(1+a−b+i)

2a Γ(1−b+ 1
2
(i+|i|))

×

{

Ai(a,b)

Γ( 1
2
a−b+ 1

2
i+1)Γ( 1

2
a+ 1

2
i+ 1

2
−[ i+1

2 ])
+ Bi(a,b)

Γ( 1
2
a−b+ 1

2
i+ 1

2 )Γ(
1
2
a+ 1

2
i−[ i2 ])

}

for i = 0, ±1, ±2, . . . , ±5. Here [x] is the greatest integer less than or equal to
x and its absolute value is denoted by |x|. The coefficients Ai(a, b) and Bi(a, b)
are obtained from the following table.

Several interesting special cases of our main identities including known re-
sults (4) and (8) are also considered.

2. Main summation formulas for Ψ2 and Φ2

Here we establish two generalized formulas for Ψ2 and Φ2 asserted by the
following two theorems.

Theorem 1. The following formula for Ψ2 holds true: For c ∈ C \ Z−
0 ,

(14)

Ψ2(a ; c, c+ i ; x, −x) =
√
π Γ(c) Γ(c+i)

Γ(c+ 1
2
(i+|i|))

∞
∑

k=0

(a)k (2x)
k

(

c+ 1
2 (i + |i|

)

k
k!

×

{

Ai

Γ( 1
2
k+c+ 1

2
i)Γ(− 1

2
k+ 1

2
i+ 1

2
−[ i+1

2 ])
+ Bi

Γ( 1
2
k+c− 1

2
+ 1

2
i)Γ(− 1

2
k+ 1

2
i−[ i

2 ])

}

for i = 0, ±1, ±2, . . . , ±5. Here the coefficients Ai := Ai(−k,−k− c+1) and
Bi := Bi(−k,−k − c+ 1) in the table.

Theorem 2. The following formula for Φ2 holds true: For c ∈ C \ Z−
0 ,

(15)

Φ2(a, a+ i; c ; x, −x) =
√
π Γ(1−a) Γ(1−a−i)

Γ(1−a+ 1
2
(|i|−i))

∞
∑

m=0

(−2x)m

(c)m m!

×

{

Ci

Γ(1− 1
2
m−a− 1

2
i)Γ(− 1

2
m+ 1

2
i+ 1

2
−[ i+1

2 ])
+ Di

Γ( 1
2
− 1

2
m−a+ 1

2
i) Γ(− 1

2
m+ 1

2
i−[ i

2 ])

}

for i = 0, ±1, ±2, . . . , ±5. Here the coefficients Ci := Ai(−m, a + i) and

Di := Bi(−m, a+ i) in the table.
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Table 1. Table for Ai(a, b) and Bi(a, b)

i Ai(a, b) Bi(a, b)

−4(6 + a− b)2 + 2b(6 + a− b) 4(6 + a− b)2 + 2b(6 + a− b)
5 +b2 + 22(6 + a− b)− 13b− 20 −b2 − 34(6 + a− b)− b + 62

4 2(a− b+ 3)(1 + a− b)− (b− 1)(b− 4) −4(a− b+ 2)

3 3b− 2a− 5 2a− b+ 1

2 1 + a− b −2

1 −1 1

0 1 0

−1 1 1

−2 a− b − 1 2

−3 2a− 3b− 4 2a− b− 2

−4 2(a− b− 3)(a− b− 1)− b(b+ 3) 4(a− b− 2)

4(a− b− 4)2 − 2b(a− b− 4) 4(a− b − 4)2 + 2b(a− b− 4)
−5 −b2 + 8(a− b− 4)− 7b −b2 + 16(a− b− 4)− b + 12

Proof. We will prove only our first main formula (14). If we set y = −x and
replace b and c by c and c+ i (i = 0, ±1, ±2, . . . , ±5) in (9), respectively, we
get

(16) Ψ2(a ; c, c+ i ; x, −x) =

∞
∑

k=0

(a)k
(c)k

xk

k!
2F1

[

−k, −k − c+ 1 ;

c+ i ;
− 1

]

.

Now it is easy to see that the 2F1 appearing on the right-hand side of (16)
can be evaluated with the help of the generalizations of Kummer’s summation
theorem (13). Then, after some simplification, we arrive at the right-hand side
of (14). This completes the proof of (14).

Making use of (10) and using the same argument as above, one can establish
our second main formula (15). �
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3. Special cases

We begin by observing the following special cases of (14) and (15): The
expression in the braces in (14):

Ai

Γ
(

1
2k + c+ 1

2 i
)

Γ
(

− 1
2k + 1

2 i+
1
2 −

[

i+1
2

])

is seen to be zero when k is a nonnegative even integer and i = ±1. Similarly
the expression in the braces in (14):

Bi

Γ
(

1
2k + c− 1

2 + 1
2 i
)

Γ
(

− 1
2k + 1

2 i−
[

i
2

])

is zero when k is a nonnegative integer and i = ±1. Taking into account these
facts, we can easily get some special cases of (14) and (15).

Here we consider to record the following special cases of our main formulas
(14) and (15).

Special cases of (14): Setting i = 0 in (14) yields immediately the known
result (4). Taking i = ±1, ±2 in (14), we get the following interesting identities:

Ψ2(a ; c, c+ 1 ; x, −x) = 2F3

[

1
2a,

1
2a+

1
2 ;

c, 1
2c+

1
2 ,

1
2c+ 1 ;

− x2

]

+
ax

c(c+ 1)
2F3

[

1
2a+

1
2 ,

1
2a+ 1 ;

c+ 1, 1
2c+ 1, 1

2c+
3
2 ;

− x2

]

;(17)

Ψ2(a ; c, c− 1 ; x, −x) = 2F3

[

1
2a,

1
2a+

1
2 ;

c− 1, 1
2c,

1
2c+

1
2 ;

− x2

]

−
ax

c(c− 1)
2F3

[

1
2a+

1
2 ,

1
2a+ 1 ;

c, 1
2c+

1
2 ,

1
2c+ 1 ;

− x2

]

;(18)

Ψ2(a ; c, c+ 2 ; x, −x) = 2F3

[

1
2a,

1
2a+

1
2 ;

c+ 1, 1
2c+ 1, 1

2c+
3
2 ;

− x2

]

+
2ax

c(c+ 2)
2F3

[

1
2a+

1
2 ,

1
2a+ 1 ;

c+ 1, 1
2c+

3
2 ,

1
2c+ 2 ;

− x2

]

;(19)

Ψ2(a ; c, c− 2 ; x, −x) = 2F3

[

1
2a,

1
2a+

1
2 ;

c− 1, 1
2c,

1
2c+

1
2 ;

− x2

]

−
2ax

c(c− 2)
2F3

[

1
2a+

1
2 ,

1
2a+ 1 ;

c− 1, 1
2c+

1
2 ,

1
2c+ 1 ;

− x2

]

.(20)
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It is remarked in passing that the formulas (17) to (20) are expressed in
terms of 2F3 as in the (4). Similar expressions of Ψ2(a ; c, c+ i ; x, −x) can be
obtained for i = ±3, ±4, ±5.

Special cases of (15): Setting i = 0 in (15) yields at once the known identity
(8). Taking i = ±1, ±2 in (15), we obtain the following interesting identities:

(21)

Φ2(a, a+ 1 ; c ; x, −x) = 1F2

[

a+ 1 ;

1
2c,

1
2c+

1
2 ;

x2

4

]

−
x

c
1F2

[

a+ 1 ;

1
2c+

1
2 ,

1
2c+ 1 ;

x2

4

]

;

(22)

Φ2(a, a− 1 ; c ; x, −x) = 1F2

[

a ;

1
2c,

1
2c+

1
2 ;

x2

4

]

+
x

c
1F2

[

a ;

1
2c+

1
2 ,

1
2c+ 1 ;

x2

4

]

;

(23)

Φ2(a, a+ 2 ; c ; x, −x) = 2F3

[

a+ 1, 1
2a+

3
2 ;

1
2c,

1
2c+

1
2 ,

1
2a+

1
2 ;

x2

4

]

−
2x

c
1F2

[

a+ 2 ;

1
2c+

1
2 ,

1
2 c+ 1 ;

x2

4

]

and

(24)

Φ2(a, a+ 2 ; c ; x, −x) = 1F2

[

a+ 1 ;

1
2c,

1
2c+

1
2 ;

x2

4

]

−
2x

c
1F2

[

a+ 2 ;

1
2c+

1
2 ,

1
2c+ 1 ;

x2

4

]

+
2x2

c(c+ 1)
1F2

[

a+ 2 ;

1
2c+ 1, 1

2c+
3
2 ;

x2

4

]

,

which are found to have two forms;

(25)

Φ2(a, a− 2 ; c ; x, −x) = 2F3

[

a− 1, 1
2a+ 1

2 ;

1
2c,

1
2c+

1
2 ,

1
2a− 1

2 ;

x2

4

]

+
2x

c
1F2

[

a ;

1
2c+

1
2 ,

1
2c+ 1 ;

x2

4

]
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and

(26)

Φ2(a, a− 2 ; c ; x, −x) = 1F2

[

a− 1 ;

1
2c,

1
2c+

1
2 ;

x2

4

]

+
2x

c
1F2

[

a ;

1
2c+

1
2 ,

1
2c+ 1 ;

x2

4

]

+
2x2

c(c+ 1)
1F2

[

a ;

1
2c+ 1, 1

2c+
3
2 ;

x2

4

]

,

which are found to have two forms. Similar expressions of Φ2(a ; c, c+i ; x, −x)
can be obtained for i = ±3, ±4, ±5.
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