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SEMI-PRIME CLOSURE OPERATIONS ON BCK-ALGEBRA

Hashem Bordbar and Mohammad Mehdi Zahedi

Abstract. In this paper we study the (good) semi-prime closure oper-
ations on ideals of a BCK-algebra, lower BCK-semilattice, Noetherian
BCK-algebra and meet quotient ideal and then we give several theorems
that make different (good) semi-prime closure operations. Moreover by
given some examples we show that the given different notions are indepen-
dent together, for instance there is a semi-prime closure operation, which
is not a good semi-prime. Finally by given the notion of “cf -Max X”,
we prove that every member of “cf -Max X” is a prime ideal. Also we
conclude some more related results.

1. Introduction

BCK-algebras and BCI-algebras are abbreviated to two B-algebras. BCK-
algebra was introduced in 1966 by Y. Imai and K. Iseki [6], and BCI-algebra was
put forward in the same year due to K. Iseki. The BCK-algebra is originated
from two different ways. One of the motivations is based on set theory. Another
motivation is from classical and non-classical propositional calcului. Also for
the first time, E. H. Moore [9] in 1910 introduced closure operation on a set.
After that many researchers have worked on closure operation, see for example
[4, 7, 10, 11]. Finally in 2012 , N. Epestein published a paper [5] about closure
operation on commutative algebra. After that we introduced the notion of
closure operation in [3]. Now in this paper we introduce the notion of semi-
prime closure operation and obtain some results as mentioned in the abstract.

2. Preliminaries

In this section, we give some basic notions relevant to closure operations and
semi-prime closure operations on ideals of a BCK-algebra. We will use them
in the next sections.

Definition 2.1 ([12, Definition 1.1.1]). An algebra (X ; ∗, 0) of type (2,0) is
called a BCI-algebra if it satisfies the following conditions: for any x, y, z ∈ X ,
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BCI-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.
BCI-2: x ∗ 0 = x.
BCI-3: x ∗ y = 0 and y ∗ x = 0 imply x = y.
We call the binary operation ∗ on X as the multiplication on X , and the

constant 0 of X the zero element of X . We often write X instead of (X ; ∗, 0)
for a BCI-algebra in briefly.

Proposition 2.2 ([12, Definition 1.1.2]). Let (X ; ∗, 0) be a BCI-algebra. Define

a binary relation ≤ on X by which x ≤ y if and only if x∗y = 0 for any x, y ∈ X.

Then (X ;≤) is a partially ordered set.

Definition 2.3 ([12, Definition 1.2.1]). For a given BCI-algebraX , if it satisfies
the condition:

BCK-1: 0 ∗ x = 0 for all x ∈ X (which means that for each x ∈ X , 0 ≤ x),
then we call this algebra a BCK-algebra.

Definition 2.4 ([8, Definition 8.1]). A BCK-algebra X is called bounded if
there exists the greatest element of X , with respect to the ordered relation ≤.
It means that there exists an element like 1 such that for each x ∈ X , x ≤ 1.

Definition 2.5 ([12, Proposition 1.1.2]). A partially ordered set (X ;≤) is
called a lower semilattice if any two elements in X have the greatest lower
bound (glb). It is called an upper semilattice if each pair of elements in X has
its least upper bound (lub).

For a given BCK-algebra X , if it forms a lower semilattice with respect
to its BCI-ordering ≤, then the algebra X is called a lower BCK-semilattice.
Similarly, we can define an upper BCK-semilattice.

In a lower BCK-semilattice we denote x ∧ y = glb{x, y}.

Definition 2.6 ([12, Definition 1.4.1]). A subset A of a BCI-algebraX is called
an ideal of X if (i) 0 ∈ A, (ii) x ∈ A and y∗x ∈ A imply y ∈ A for any x, y ∈ X .

Note that X and {0} are ideals of X , and they are called the trivial ideals
of X .

Theorem 2.7 ([8, Theorem 1.2]). Let A be an ideal of a BCK-algebra X.

Then for any x, y ∈ X, x ∈ A and y ≤ x we have y ∈ A.

Definition 2.8 ([12, Definition 1.4.2]). An ideal A of a BCI-algebraX is called
closed if A is closed under the multiplication on X .

Definition 2.9 ([12, Definition 1.4.3]). Suppose that S is a subset of a BCI-
algebra X . The least ideal of X , containing S, is called the generated ideal of
X by S and denoted by 〈S〉 or (S]. An ideal A of a BCK-algebra X is said to
be finitely generated if there is a finite subset S of X such that A = 〈S〉. The
ideal 〈a〉 generated by one generator a is also called a principal ideal of X .

Theorem 2.10 ([8, Theorem 5.5]). A BCK-algebra X is commutative if and

only if (X ;≤) is a lower semilattice with x ∧ y = y ∗ (y ∗ x) for any x, y ∈ X.



SEMI-PRIME CLOSURE OPERATIONS ON BCK-ALGEBRA 387

Definition 2.11 ([8, Definition 7.8]). A BCK-algebraX is said to be Noether-
ian if each ideal of X is finitely generated.

Definition 2.12 ([8, Definition 7.5]). For a given BCK-algebraX , we say that
X satisfies the ascending chain condition, abbreviated by ACC, if there does
not exists an infinite properly ascending chain I1 ⊆ I2 ⊆ · · · in IX .

Theorem 2.13 ([8, Theorem 7.9]). Given a BCK-algebra X, the following are

equivalent:
(i) X is Noetherian;
(ii) X satisfies ACC.

Definition 2.14 ([12, Definition 1.6.1]). Suppose (X ; ∗, 0) and (X ′; ∗′, 0′) are
two BCK-algebras. A mapping f : X −→ X ′ is called a homomorphism from
X into X ′ if, for any x, y ∈ X

f(x ∗ y) = f(x) ∗′ f(y).

In addition, if the mapping f is onto, then f is called an epimorphism and the
mapping is called an isomorphism if it is both an epimorphism and one-to-one.

Proposition 2.15 ([12, Proposition 1.6.3]). Let f be a BCI-homomorphism

from X to X ′. Then f is isomorphic if and only if the inverse mapping f−1 is

isomorphic.

Definition 2.16 ([12, Definition 1.5.1]). An equivalence relation θ on a BCI-
algebra X is called a congruence on X if it has the substitution property:

x ∼ y(θ), u ∼ v(θ) imply x ∗ u ∼ y ∗ v(θ)

for any x, y, u, v ∈ X .
If θ is an equivalence relation on a BCI-algebra X , we denote θx for the

equivalence class containing x. It means that θx = {y ∈ X | y ∼ x(θ)}. Also
we denote X

θ
for the quotient set {θx |x ∈ X}. If θ is a congruence on X , the

operation ∗ on X
θ

given by θx ∗ θy = θx∗y is well-defined. Then (X
θ
, ∗, θ0) is an

algebra which is called the quotient algebra of X induced by θ.

Definition 2.17 ([12, Definition 5.1]). A BCK-algebra X is called commuta-
tive if

x ∗ (x ∗ y) = y ∗ (y ∗ x)

for any x, y ∈ X .

Definition 2.18 ([12, Definition 2.4.2]). A BCK-algebra X is called n-fold
commutative if there exists a fixed natural number n such that the following
identity holds:

x ∗ y = x ∗ (y ∗ (y ∗ xn)).

Definition 2.19 ([12, Definition 2.4.3]). A BCK-algebra X is called multiply
commutative if for any x, y ∈ X , there exists a fixed natural number n = n(x, y)
such that

x ∗ y = x ∗ (y ∗ (y ∗ xn)).
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Definition 2.20 ([12, Definition 2.5.3]). An ideal A of a BCI-algebra X is
called commutative if x ∗ y ∈ A implies

x ∗ ((y ∗ (y ∗ x)) ∗ (0 ∗ (y ∗ x))) ∈ A

for any x, y ∈ X .

Theorem 2.21 ([12, Theorem 1.6.5]). Let f : X −→ X ′ be an epimorphism

and A be an ideal of X. Then f(A) is an ideal of X ′.

Theorem 2.22 ([12]). Let f : X −→ X ′ be an BCI-homomorphism and A be

a subset of X, and A′ a subset of X ′. Then

(i) If A is a subalgebra of X, then f(A) is a subalgebra of X ′.

(ii) If A′ is a subalgebra of X ′, then f−1(A′) is a subalgebra of X.

(iii) If A′ is an ideal of X ′, then f−1(A′) is an ideal of X.

(iv) If A′ is a closed ideal of X ′, then f−1(A′) is a closed ideal of X.

Theorem 2.23 ([12, Theorem 2.5.6]). An ideal A of a BCK-algebra X is

commutative if and only if the quotient algebra X
A

is a commutative BCK-

algebra.

Definition 2.24 ([3, Definition 3.1]). By an operation “d” on “IX” the set
of all ideals of a BCK-algebra X , we mean a function d : IX −→ IX , and for
simplicity of notation for any A ∈ IX we write d(A) = Ad.

Definition 2.25 ([3, Definition 3.2]). Let X be a BCK-algebra. A closure
operation “cl” on the set IX of all ideals of X , is an operation cl : IX −→ IX
such that A 7−→ Acl satisfying the following conditions:

(i) A ⊆ Acl for all A ∈ IX (Extension).
(ii) Acl = (Acl)cl for all A ∈ IX (Idempotence).
(iii) If A and B are in IX and B ⊆ A, then Bcl ⊆ Acl (Order-preservation).

Definition 2.26 ([3, Definition 3.3]). We say that an ideal A in IX is “cl-
closed” if A = Acl. Therefore for any ideal A of X , Acl is “cl-closed”.

Definition 2.27 ([3, Definition 3.5]). Let A and B be ideals of a lower BCK-
semilattice X . Define

A ∧B = 〈{x ∧ y |x ∈ A, y ∈ B}〉.

Also, if x ∈ X , then x ∧B = {x} ∧B = 〈{x ∧ y | y ∈ B}〉.

Definition 2.28 ([3, Definition 3.6]). Let X be a lower BCK-semilattice and∑
⊆ IX . Then we say that

∑
is ∧-closed if A ∧ B ∈

∑
for any two ideals

A,B ∈
∑

.

Remark 2.29 ([3, Definition 3.7]). (i) From the above definition we get that:

A2 = A ∧A = 〈{x ∧ y |x, y ∈ A}〉 and A3 = A2 ∧ A, . . . .

(ii) In a lower BCK-semilattice (specially, in a commutative BCK-algebra),
we have

· · · ⊆ A3 ⊆ A2 ⊆ A,
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because a commutative BCK-algebra is a lower BCK-semilattice and x ∧ y =
x ∗ (x ∗ y) ≤ x for any x, y ∈ X .

Definition 2.30 ([3, Definition 3.22]). Let cl1 and cl2 be two closure operations
on a BCK-algebra X . Then we write cl1 ≤ cl2 if for every ideal A, Acl1 ⊆ Acl2 .

Lemma 2.31 ([3, Definition 4.1]). Let “c” be a closure operation. Consider

“cf” by setting Acf =
⋃
{Bc |B is a finitely generated ideal such that B ⊆ A}.

Then “cf” is a closure operation.

Definition 2.32 ([3, Definition 4.2]). If c = cf , we say that “c” is a closure
operation of finite type.

3. Semi-prime closure operations

In this section, we define some types of semi-prime closure operations on
ideals and we give several theorems that make different (good) semi-prime
closure operations, especially on a Noetherian BCK-algebra.

Definition 3.1. Let “cl” be a closure operation on a lower BCK-semilattice
X . We say that “cl” is;

(i) A semi-prime closure operation, if for every two ideals A and B of X ,
we have

A ∧Bcl ⊆ (A ∧B)cl,

Acl ∧B ⊆ (A ∧B)cl.

(ii) A good semi-prime closure operation, if for every two ideals A and B
of X , we have

A ∧Bcl = Acl ∧B = (A ∧B)cl.

Remark 3.2. Remember that for ideals A and B,

A ∧B = 〈{x ∧ y |x ∈ A, y ∈ B}〉.

Proposition 3.3. Let A and B be two arbitrary ideals of a lower BCK-

semilattice X. Then we have A∧B = B∧A. It means that “∧” is commutative

on ideals in every lower BCK-semilattice.

Proof. Suppose that x∧ y is a generator of A∧B. Then since we have x∧ y ≤
x, x∧y ≤ y, x ∈ A, y ∈ B and A,B are ideals of X , we conclude that x∧y ∈ B
and x ∧ y ∈ A, by Theorem 2.7. Thus

x ∧ y = (x ∧ y) ∧ (x ∧ y) ∈ B ∧ A.

Therefore A ∧ B ⊆ B ∧ A. Similarly we have B ∧ A ⊆ A ∧B and the proof is
complete. �
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Remark 3.4. An important point is involved in Definition 3.1 that, by using
Proposition 3.3 if for every two ideals A and B in a lower BCK-semilattice X ,
A ∧Bcl ⊆ (A ∧B)cl or Acl ∧B ⊆ (A ∧B)cl, then “cl” is a semi-prime closure
operation. Because if A∧Bcl ⊆ (A∧B)cl, then Acl∧B = B∧Acl ⊆ (B∧A)cl =
(A ∧B)cl.

Therefore “cl” is a semi-prime closure operation, precisely when for every
two ideals A and B of X , we have

A ∧Bcl ⊆ (A ∧B)cl.

Example 3.5. Suppose that X is the set {0, 1, 2, 3, 4}. Define a binary oper-
ation ∗ on X by the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 4 0

Then X is a lower BCK-semillatice with 4 as the greatest element and it has
5 ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 2, 3} and A4 =
{0, 1, 2, 3, 4} = X as we can see below:

0

✻
1

✻
2

✻
3

✻
4

A0

✻
A1

✻
A2

✻
A3

✻
A4

Define “cl” on ideals as follows:

(A0)
cl = A0, (A1)

cl = A2, (A2)
cl = A2, (A3)

cl = A4 and (A4)
cl = A4.

One can easily see that “cl” is a semi-prime closure operation which is not
good, because (A1 ∧ A3)

cl = (A1)
cl = A2, Acl

1 ∧ A3 = A2 ∧ A3 = A2 and
A1 ∧ Acl

3 = A1 ∧ A4 = A1. Hence

(A1 ∧A3)
cl = Acl

1 ∧ A3 6= A1 ∧ Acl
3 .

Therefore it is not a good semi-prime closure operation.
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Example 3.6. In Example 3.5, if we define “cl” as an identity closure opera-
tion, which means that

(A0)
cl = A0, (A1)

cl = A1, (A2)
cl = A2, (A3)

cl = A3 and (A4)
cl = A4,

then “cl” is a good semi-prime closure operation.

Proposition 3.7. Let “cl” be a closure operation on a lower BCK-semilattice

X. Then the following statements are equivalent:
(i) “cl” is a semi-prime closure operation.

(ii) For all ideals A and B, (Acl ∧Bcl)cl = (A ∧B)cl.

Proof. Suppose that (i) holds. By extension property of closure operation,
A ∧B ⊆ Acl ∧Bcl. Hence by order-preservation property of “cl”, (A ∧B)cl ⊆
(Acl ∧ Bcl)cl. For the converse, since “cl” is a semi-prime closure operation,
Acl ∧Bcl ⊆ (Acl ∧B)cl and Acl ∧B ⊆ (A ∧B)cl. Therefore

(Acl ∧Bcl)cl ⊆ ((Acl ∧B)cl)cl = (Acl ∧B) ⊆ (A ∧B)cl.

Now if (ii) holds, then by extension property of closure operation

A ∧Bcl ⊆ Acl ∧Bcl ⊆ (Acl ∧Bcl)cl = (A ∧B)cl.

Similarly

Acl ∧B ⊆ (A ∧B)cl.

Therefore “cl” is a semi-prime closure operation. �

Remark 3.8. We can check that Proposition 3.7 holds for the BCK-algebra X
in Example 3.5. It means that for all ideals A and B, since “cl” is a semi-
prime closure operation we should have (Acl∧Bcl)cl = (A∧B)cl. For instance,
(Acl

2 ∧Acl
3 )

cl = (A2∧A4)
cl = (A2)

cl = A2 and (A2∧A3)
cl = (A2)

cl = A2. Thus
(Acl

2 ∧ Acl
3 )

cl = (A2 ∧A3)
cl.

Lemma 3.9. Suppose that (X1, ∗), (X2, ∗
′) are two lower BCK-semilattices

with x ∧ y = y ∗ (y ∗ x) and f : X1 −→ X2 is a BCK-homomorphism from X1

into X2. If A and B are ideals of X1, then

f(A ∧B) = f(A) ∧ f(B).

Proof. Since A ∧B = 〈{x ∧ y |x ∈ A, y ∈ B}〉 and x ∧ y = y ∗ (y ∗ x), we have

f(x∧y) = f(y∗(y∗x)) = f(y)∗′ (f(y∗x)) = f(y)∗′ (f(y)∗′ f(x)) = f(x)∧f(y).

Therefore f(A ∧B) = f(A) ∧ f(B). �

Theorem 3.10. Let ϕ : X1 −→ X2 be a BCK-epimorphism between two lower

BCK-semilattices X1 and X2 with x ∧ y = y ∗ (y ∗ x) and “cl” be a semi-prime

closure operation on X2. For an ideal A of X1, define Ac = ϕ−1((ϕ(A))cl).
Then “c” is a semi-prime closure operation on X1.
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Proof. Since “cl” is a semi-prime closure operation, so for any two arbitrary
ideals A and B of X1 we have

(ϕ(A)) ∧ (ϕ(B))cl ⊆ (ϕ(A) ∧ ϕ(B))cl = (ϕ(A ∧B))cl, by Lemma 3.9.

Hence, ϕ−1(ϕ(A) ∧ ϕ(B)cl) ⊆ ϕ−1(ϕ(A ∧B)cl). Also we have

A ∧ (ϕ−1(ϕ(B)cl)) ⊆ ϕ−1((ϕ(A)) ∧ (ϕ−1(ϕ(B)cl))) ⊆ ϕ−1(ϕ(A) ∧ ϕ(B)cl).

Therefore A ∧Bc ⊆ (A ∧B)c and “c” is a semi-prime closure operation. �

Theorem 3.11. Let ϕ : X1 −→ X2 be a BCK-epimorphism between lower

BCK-semilattices X1 and X2 with x∧y = y∗(y∗x) and let “cl” be a semi-prime

closure operation on X1. For each ideal A of X2, define Ac = ϕ((ϕ−1(A))cl).
Then “c” is a semi-prime closure operation on X2.

Proof. The proof is similar to the proof of Theorem 3.10 by imposing the
suitable modification. �

Remark 3.12. In Theorems 3.10 and 3.11, if ϕ is an isomorphism and “cl” is
a good semi-prime closure operation, then “c” is a good semi-prime closure
operation too. The proof is straightforward and left to the reader.

Now we give an example to show that it is necessary to have the isomorphism
condition in Remark 3.12.

Example 3.13. Suppose that X1 is the set {0, 1, 2}. Define a binary operation
∗ on X1 by the following Cayley table:

∗ 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

It is easy to seen that X1 is a lower BCK-semilattice with x∧ y = y ∗ (y ∗ x)
(because it is commutative). Also we have 0 ≤ 1, 0 ≤ 2 and 1 ∧ 2 = 0, that is:

0
❅

❅
❅■
1

�
�
�✒

2

The BCK-semilattice X1 has 4 ideals, A0 = {0}, A1 = {0, 1}, A2 = {0, 2}
and A3 = {0, 1, 2} = X1:
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A0

❅
❅

❅■
A1

�
�
�✒

A2
❅

❅
❅■

A3

�
�
�✒

A3

Also suppose that X2 is the set {0, 1}. Define a binary operation ∗′ on X2

by the following Cayley table:

∗ 0 1
0 0 0
1 1 0

It is clear that X2 is a lower BCK-semilattice with x ∧ y = y ∗ (y ∗ x). The
lower BCK-semilattice X2 has only 2 ideals, A′

0 = {0} ⊆ A′

1 = {0, 1} = X2:

A′

0

✻

A′

1

Let ϕ : X1 −→ X2 be the mapping such that ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = 0.
Then Im(ϕ) = X2 and routine verification gives that ϕ is an epimorphism, but
it is not isomorphism. Now define a closure operation “cl” on ideals of X2 as
follows:

(A′

0)
cl = A′

0, (A′

1)
cl = A′

1.

It is easy to check that “cl” is a good semi-prime closure operation. Also we
have ϕ(A0) = ϕ(0) = {0} = A′

0. So

ϕ(A0)
cl = (A′

0)
cl = A′

0 = {0} ⇒ ϕ−1(ϕ(A0)
cl) = ϕ−1(0) = {0, 2} = A2.

Therefore Ac
0 = A2. A similar way show that Ac

1 = A3, A
c
2 = A2 and Ac

3 = A3.
Since “cl” is a semi-prime closure operation on X2 and ϕ is an epimorphism,

by Theorem 3.10 “c” is a semi-prime closure operation too. But “c” is not a
good semi-prime closure operation because,

(A0 ∧ A1)
c = Ac

0 = A2

and

A0 ∧ Ac
1 = A0 ∧ A3 = A0, Ac

0 ∧ A1 = A2 ∧ A1 = A0

therefore

(A0 ∧ A1)
c 6= Ac

0 ∧ A1 = A0 ∧ Ac
1.
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Lemma 3.14. Suppose that {cλ}λ∈Λ is a set of closure operations on a lower

BCK-semilattice X such that for each λ, the operation “cλ” be a (good) semi-

prime closure operation. Then the operation “c” defined by Ac =
⋂

λ∈Λ
Acλ is

a (good) semi-prime closure operation.

Proof. By using Lemma 3.21 of [3], “c” is a closure operation. Since for each
λ and for any two arbitrary ideals A and B of X , A∧Bcλ ⊆ (A∧B)cλ . Hence

⋂

λ∈Λ

(A ∧Bcλ) ⊆
⋂

λ∈Λ

(A ∧B)cλ .

So A ∧ (
⋂

λ∈Λ
(Bcλ)) ⊆

⋂
λ∈Λ

(A ∧ B)cλ . It means that A ∧ Bc ⊆ (A ∧ B)c.
Therefore “c” is a semi-prime closure operation.

The proof of the good case is similar to above. �

Definition 3.15. Suppose that {cλ}λ∈Λ is a set of closure operations. We say
that it is a direct set if for any λ1, λ2 ∈ Λ, there exists some µ ∈ Λ such that
cλi

≤ cµ for i = 1, 2.

Theorem 3.16. Suppose that {cλ}λ∈Λ is a set of closure operations on a lower

BCK-semilattice X such that for each λ, the operation “cλ” is a (good) semi-

prime closure operation. Let {cλ}λ∈Λ be a direct set of closure operation and

assume that every ideal of X is finitely generated. Then the operation “c”
defined by Ac =

⋃
λ∈Λ

Acλ is a (good) semi-prime closure operation.

Proof. The proof is similar to the proof of Lemma 3.14, by using Lemma 3.24
of [3]. �

Theorem 3.17. Let “c” be a semi-prime closure operation and X be a lower

BCK-semilattice. Consider “cf”, A
cf =

⋃
{Bc |B is a finitely generated ideal

such that B ⊆ A}. Then “cf” is a semi-prime closure operation.

Proof. It is enough to show that for arbitrary ideals A and B, A ∧ Bcf ⊆
(A∧B)cf . Suppose that a ∈ A and b ∈ Bcf . By definition of “cf” there exists
a finitely generated ideal K such that K ⊆ B and b ∈ Kc. Since “c” is a
semi-prime closure operation, so

a ∧ b ∈ (a] ∧Kc ⊆ ((a] ∧K)c.

Also, (a] ∧K is a finitely generated ideal and (a] ∧K ⊆ A ∧B. Thus, a ∧ b ∈
(A ∧B)cf . Therefore A ∧Bcf ⊆ (A ∧B)cf . �

The next proposition shows that Theorem 3.17 is true for a good semi-prime
closure operation on finitely generated ideals.

Proposition 3.18. Suppose that “c” is a good semi-prime closure operation

and X be a lower BCK-semilattice. Then “cf” is a good semi-prime closure

operation on finitely generated ideals of X.
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Proof. From the proof of Theorem 3.17 we can conclude that A ∧Bcf ⊆ (A ∧
B)cf and Acf ∧ B ⊆ (A ∧ B)cf . If x ∈ (A ∧ B)cf , then there is a finitely
generated ideal K such that K ⊆ (A ∧ B) and x ∈ Kc. Since “c” is a good
semi-prime closure operation, Kc ⊆ (A∧B)c = A∧Bc. Hence x ∈ A∧Bc. So
there exist a ∈ A and b ∈ Bc such that x = a∧b. Also we have b ∈ Bcf , because
B is a finitely generated ideal and b ∈ Bc. Therefore x = a ∧ b ∈ A ∧Bcf and
(A ∧B)cf ⊆ A ∧Bcf . Similarly, we have (A ∧B)cf ⊆ Acf ∧B. Thus “cf” is a
good semi-prime closure operation. �

Remark 3.19. Since in a Noetherian BCK-algebra every ideal is finitely gener-
ated, Lemma 3.14, Theorems 3.16 and 3.17 are true for every Noetherian lower
BCK-semilattice.

Definition 3.20. Let X be a lower BCK-semilattice and A, B be two ideals
of X . Then the notion of meet quotient ideal (A :∧ B) is defined by

(A :∧ B) = 〈{x ∈ X : x ∧B ⊆ A}〉.

Clearly this is another ideal of X and A ⊆ (A :∧ B).
In the special case in which A = 0, the ideal meet quotient

(0 :∧ B) = 〈{x ∈ X : x ∧B = 0}〉 = 〈{x ∈ X : x ∧ b = 0 for all b ∈ B}〉

is called the annihilator of B and is also denoted by B∗.

Lemma 3.21. Let A,B and C be ideals of a commutative BCK-algebra X,

and let (Aλ)λ∈Λ be a family of ideals of X. Then

(i) ((A :∧ B) :∧ C) = (A :∧ B ∧ C) = ((A :∧ C) :∧ B);
(ii) (∩λ∈ΛAλ :∧ C) = ∩λ∈Λ(Aλ :∧ C).

Proof. (i) Suppose that x ∈ ((A :∧ B) :∧ C), then x ∧ C ⊆ (A :∧ B). Hence
(x ∧ C) ∧ B ⊆ A. Since X is a commutative BCK-algebra, (x ∧ C) ∧ B =
x ∧ (C ∧B). Therefore x ∧ (C ∧B) ⊆ A and x ∈ (A :∧ B ∧ C). The inverse is
clear.

A similar way with commutativity of ∧ show that

((A :∧ B) :∧ C) = ((A :∧ C) :∧ B).

(ii) Let x ∈ (∩λ∈ΛAλ :∧ C). Then x∧C ⊆ (∩λ∈ΛAλ). It means that for each
c ∈ C, x∧c ∈ (∩λ∈ΛAλ). So we have x∧c ∈ Aλ for each λ ∈ Λ. Thus x∧C ⊆ Aλ

and x ∈ (Aλ :∧ C) for each λ ∈ Λ. Therefore x ∈ ∩λ∈Λ(Aλ :∧ C). �

Theorem 3.22. Let A and B be two arbitrary ideals of a BCK-algebra X.

Then

(i) if A is a commutative ideal, then (A :∧ B) is a commutative ideal,

(ii) if A is an n-fold (multiply) commutative ideal, then (A :∧ B) is an

n-fold (multiply) commutative ideal,

(iii) if A is an implicative ideal, then (A :∧ B) is an implicative ideal,

(iv) if A is a positive implicative ideal, then (A :∧ B) is a positive implica-

tive ideal.
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Proof. Since A ⊆ (A :∧ B), by using Theorems 2.6, 3.6 and 4.5 of [8] the proof
is straightforward. �

Theorem 3.23. Let X be a commutative BCK-algebra, A be a prime ideal of

X and B 6= 0 be an ideal of X. Then (A :∧ B) is a prime ideal.

Proof. Suppose that x∧ y ∈ (A :∧ B) and x /∈ (A :∧ B). Then (x∧ y)∧B ⊆ A
and there exists b ∈ B such that x ∧ b /∈ A. Since X is a commutative BCK-
algebra, (x ∧ y) ∧ b = x ∧ (y ∧ b) = x ∧ (b ∧ y) = (x ∧ b) ∧ y ∈ A. Hence y ∈ A
because A is a prime ideal.

For each b ∈ B, y ∧ b ≤ y. So y ∧ b ∈ A because A is an ideal and y ∈ A.
Therefore y ∈ (A :∧ B) and (A :∧ B) is a prime ideal. �

In Theorem 3.23, if X is a lower BCK-semilattice and A is a prime ideal,
then (A :∧ B) is not a prime ideal necessary. It means that X should be a
commutative BCK-algebra. Let us illustrate the point with an example.

Example 3.24. Suppose that X is the set {0, 1, 2, 3, 4}. Define a binary op-
eration ∗ on X by the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

X is a lower BCK-semillatice and it has 6 ideals A0 = {0}, A1 = {0, 1},
A2 = {0, 4}, A3 = {0, 1, 2, 3}, A4 = {0, 1, 4} and A5 = {0, 1, 2, 3, 4} = X as we
can see below:

0

✻
1

�
�
�✒
4

✻
2

✻
3
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{0}
❅

❅
❅

❅■
{0, 1}

�
�
�
�✒
{0, 4}

✻

{0, 1, 2, 3}

✻

{0, 1, 4}

✟✟✟✟✟✟✯

{0, 1, 2, 3, 4}

❍❍❍❍❍❍❨

✟✟✟✟✟✟✟✟✯

X is not a commutative BCK-algebra because 2∧1 = 1∧2 = 1 but 2∗(2∗1) =
2∗2 = 0. Hence 1∧2 6= 2∗ (2∗1). It is easy to check that P = A3 = {0, 1, 2, 3}
is a prime ideal.

By routine verification we can check that

(P :∧ A) = {x ∈ X ;x ∧ A ⊆ P} = X.

Therefore (P :∧ A) can not be a prime ideal because it is not proper.

Theorem 3.25. Let “cl” be a (good) semi-prime closure operation on a lower

BCK-semilattice X and A, B be two ideals of X. Then

(i) (A :∧ B)cl ⊆ (Acl :∧ B).
(ii) If A is a cl-closed ideal, then (A :∧ B) is a cl-closed ideal.

(iii) (Acl :∧ B) is a cl-closed ideal.

Proof. (i) Suppose that x ∈ (A :∧ B)cl, then B ∧ x ⊆ B ∧ (A :∧ B)cl. Since
“cl” is a semi-prime closure operation,

B ∧ (A :∧ B)cl ⊆ (B ∧ (A :∧ B))cl.

Also, B ∧ (A :∧ B) ⊆ A. Hence (B ∧ (A :∧ B))cl ⊆ Acl. Therefore B ∧ x ⊆ Acl

and x ∈ (Acl :∧ B).
(ii) If A is a “cl-closed” ideal, then

(A :∧ B)cl ⊆ (Acl :∧ B) = (A :∧ B).

Therefore (A :∧ B) is a “cl-closed” ideal.
(iii) Since Acl is a “cl-closed” ideal, the proof is clear by (ii). �

Theorem 3.26. Suppose that “cl” is a (good) semi-prime closure operation

on a lower BCK-semilattice X, A is an ideal and S is a ∧-close subset of X.
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If X is a Noetherian lower BCK-semilattice and A is a “cl-closed” ideal, then

B = 〈{x ∈ X | there exists s ∈ S, x ∧ s ∈ A}〉 is a “cl-closed” ideal.

Proof. Since X is a Noetherian BCK-algebra, we have B = (b1, b2, . . . , bn]
where bi ∈ X , i = 1, 2, . . . , n. So there exists si ∈ S for each i = 1, 2, . . . , n,
such that bi∧si ∈ A. Put P = s1∧s2∧· · ·∧sn, we have P ⊆ S and B∧P ⊆ A.
Hence B ⊆ (A :∧ P ). Now suppose that x ∈ (A :∧ P ), then x ∧ P ⊆ A which
means that x ∈ B. So (A :∧ P ) ⊆ B. Therefore (A :∧ P ) = B.

Since A is a “cl-closed” ideal, B is a “cl-closed” ideal too, by Theorem
3.25(ii). �

Theorem 3.27. Let “cl” be a (good) semi-prime closure operation on a lower

BCK-semilattice X with 1 as the greatest element and A be an ideal of X. Then

the maximal elements of the set H = {A : Acl = A 6= X} are prime ideals.

Proof. Suppose that B is a maximal element of H and x, y ∈ X . If x ∧ y ∈ B
and x /∈ B, then x ∈ (B :∧ y). So B ⊂ (B :∧ y). By Theorem 3.25(ii), (B :∧ y)
is a “cl-closed” ideal. The maximality of B shows that (B :∧ y) = X . Since
1 ∈ X = (B :∧ y), so 1 ∧ y = y ∈ B. Therefore B is a prime ideal. �

Notation 3.28. Let “cl” be a (good) semi-prime closure operation on a lower
BCK-semilattice X . Then we denote the set of maximal “cf -closed” ideals by
“cf -Max X”.

Corollary 3.29. Suppose that “cl” be a semi-prime closure operation on a

lower BCK-semilattice X with 1 as the greatest element. Then

(i) every member of “cf -Max X” is a prime ideal.

(ii) every “cf -closed” ideal is contained in one of the member of “cf -Max X”.

Proof. (i) By using Theorem 3.17, “cf” is a semi-prime closure operation too.
Now Theorem 3.27, indicates that every member of “cf -Max X” is a prime
ideal.

(ii) Theorem 4.4 of [3], shows that, “cf” is a finite-type closure operation.
By using Theorem 4.6 of [3], we have every “cf -closed” ideal is contained in
one of the member of “cf -Max X”. �

Remark 3.30. By using Proposition 3.18, we can conclude that
(i) If “cl” is a good semi-prime closure operation on a lower BCK-semilattice

X with 1 as the greatest element, then Corollary 3.29 holds for finitely gener-
ated ideals of X .

(ii) Corollary 3.29 holds for every Noetherian lower BCK-semilattice.

Lemma 3.31. Let X be a lower BCK-semilattice and P be a prime ideal.

Then X − P is a “ ∧ -closed” subset of X.

Proof. Suppose that x, y ∈ X−P . On the contrary suppose that x∧y /∈ X−P .
Then x ∧ y ∈ P . Since P is a prime ideal, we have x ∈ P or y ∈ P which is a
contradiction. �
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Theorem 3.32. Suppose that A is an ideal of a lower BCK-semilattice X with

1 as the greatest element and P is a prime ideal. Define “clP ” as follows:

AclP =
⋃

d∈X−P

(A :∧ (d]).

Then “clP ” is a semi-prime closure operation.

Proof. It is clear that A ⊆ AclP . Now suppose that A and B are two ideals
of X such that A ⊆ B. Then

⋃
d∈X−P (A :∧ (d]) ⊆

⋃
d∈X−P (B :∧ (d]). Hence

AclP ⊆ BclP . Put H = AclP =
⋃

d∈X−P (A :∧ (d]) and let α ∈ (AclP )clp =

HclP =
⋃

d∈X−P (H :∧ (d]). Then there exists s ∈ X − P such that α ∧ s ∈ H .
Hence there exists t ∈ X −P such that (α∧ s)∧ t ∈ A. By using Lemma 3.31,
(s ∧ t) ∈ X − P and α ∧ (s ∧ t) ∈ A which means that α ∈ AclP . Therefore
“clP” is a closure operation.

Now suppose that A and B are two ideals of X . Then it is clear that
A ∧ (B :∧ (d]) ⊆ (A ∧B :∧ (d]). Hence

A ∧ (
⋃

d∈X−P

(B :∧ (d]) ⊆
⋃

d∈X−P

(A ∧B :∧ (d])

and A∧BclP ⊆ (A∧B)clP . Therefore “clP ” is a semi-prime closure operation.
�

The next example shows that Theorem 3.32 is not true for a good semi-prime
closure operation.

Example 3.33. Suppose that X is the set {0, 1, 2, 3, 4}. Define a binary op-
eration ∗ on X by the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

The lower BCK-semillatice X is commutative and it has 8 ideals:

0
❅

❅
❅■

1
✻
3

�
�
�✒
4

✻
2
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{0}
❅

❅
❅

❅■
{0, 3}

�
�
�
�✒
{0, 1, 2}

✻
{0, 4}�

�
��✒
{0, 1, 2, 3}

❅
❅

❅❅■
{0, 1, 2, 3}

❅
❅

❅❅■
{0, 3, 4}

�
�
��✒
{0, 1, 2, 4}

PPPPPPPP✐

✟✟✟✟✟✟✯

✻

{0, 1, 2, 3, 4}

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❨

Let P = {0, 3, 4}. Then P is a prime ideal (one can easily check it). So
X −P = {1, 2}. Also (1] = {x ∈ X : x ∗ 1n = 0} = {0, 1, 2} and (2] = {x ∈ X :
x ∗ 2n = 0} = {0, 1, 2}. Put A0 = {0}, A1 = {0, 3} and A2 = {0, 1, 2}. Then
A0, A1 and A2 are ideals and

(A0 :∧ (1]) = {x ∈ X : x ∧ (1] ⊆ {0}} = {0, 3, 4},

(A0 :∧ (2]) = {x ∈ X : x ∧ (2] ⊆ {0}} = {0, 3, 4},

(A1 :∧ (1]) = {x ∈ X : x ∧ (1] ⊆ {0, 3}} = {0, 3, 4},

(A1 :∧ (2]) = {x ∈ X : x ∧ (2] ⊆ {0, 3}} = {0, 3, 4}.

Also

(A2 :∧ (1]) = {x ∈ X : x ∧ (1] ⊆ {0, 1, 2}} = {0, 1, 2, 3, 4},

(A2 :∧ (2]) = {x ∈ X : x ∧ (2] ⊆ {0, 1, 2}} = {0, 1, 2, 3, 4}.

Hence AclP
0

= (A0 :∧ (1]) ∪ (A0 :∧ (2]) = {0, 3, 4}, AclP
1

= (A1 :∧ (1]) ∪ (A1 :∧
(2]) = {0, 3, 4} and AclP

2
= (A2 :∧ (1]) ∪ (A2 :∧ (2]) = {0, 1, 2, 3, 4}.

By using Theorem 3.32, clP is a semi-prime closure operation but it is not
good, because AclP

1
∧ A2 = {0, 3, 4} ∧ {0, 1, 2} = {0}, A1 ∧ AclP

2
= {0, 3} ∧

{0, 1, 2, 3, 4} = {0, 3} and (A1 ∧ A2)
clP = ({0, 3} ∧ {0, 1, 2})clP = ({0})clP =

{0, 3, 4}. Therefore

AclP
1

∧A2 6= A1 ∧ AclP
2

6= (A1 ∧ A2)
clP .

Theorem 3.34. Let “cl” be a semi-prime closure operation on ideals of a

lower BCK-semilattice X with 1 as the greatest element. For each ideal A of

X, define “clS” as follows:

AclS = 〈{x ∈ X | ∀P ∈ cf -Max X, ∃d ∈ X − P, d ∧ x ∈ A}〉.

Then
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(i) “clS” is a semi-prime closure operation,

(ii) clS ≤ cf .

Proof. (i) It is clear that AclS =
⋂

P∈cf -Max X AclP . Thus Theorem 3.32 and

Lemma 3.14, show that “clS” is a semi-prime closure operation.
(ii) Let x ∈ AclS . Then for each prime ideal P ∈ cf -Max X , there exists

dP ∈ X −P such that dP ∧ x ∈ A. Suppose that B = 〈{dP : P ∈ cf -Max X}〉.
Then B ∧ x ⊆ A. It is enough to prove that Bcf = X .

Now on the contrary let Bcf be a proper ideal of X . Then by Corollary
3.29, there exists an ideal P ′ in “cf -Max X” such that Bcf ⊆ P ′. But dP ′ ∈
B ⊆ Bcf . Hence dP ′ ∈ P ′ and it is a contradiction. Therefore Bcf = X .

So we have:

x = 1 ∧ x ∈ X ∧ x = Bcf ∧ x ⊆ (B ∧ x)cf ⊆ Acf .

Therefore x ∈ Acf . �

Remark 3.35. Since every commutative BCK-algebra is a lower BCK-semi-
lattice with x ∧ y = y ∗ (y ∗ x), Lemma 3.9, Theorems 3.10, 3.11 hold for a
commutative BCK-algebra too.

4. Conclusions

As we mentioned in the abstract, in this article we give the notions of semi-
prime closure operation and good semi-prime closure operation. After that,
we obtain some different semi-prime closure operations together with some
more related results on Noetherian BCK-algebras, lower BCK-semilattices and
commutative BCK-algebras. Also we define notions of meet quotient and
“cf -Max X” and obtain some results.

Now how can we define a prime closure operation on ideals of a BCK-algebra
or some other types of closure operation and the relationship between them.
Also if the ideal A has a especial property, then what can be conclude about
the properties of closure operation of A.

References

[1] G. Birkhoff, Lattice Theory, third ed., American Mathematical Society Colloquium Pub-

lications, vol. XXV, Amer. Math. Soc., Providence, RI, 1967.
[2] H. Bordbar, M. M. Zahedi, and R. A. Borzooei, Some properties of closure operation

on (Noetherian) BCK-algebra, 12th AHA congress, Greece, 2014.
[3] , (A finite type) Closure operations on BCK-algebra, Submitted.
[4] N. Epstein, Reductions and special parts of closure, J. Algebra 323 (2010), no. 8, 2209–

2225.
[5] , A Guide to Closure Operation in Commutative Algebra, Progress in commuta-

tive algebra 2, Walter de Gruyter, Berlin, 2012.
[6] Y. Imai and K. Iseki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad.

42 (1966), 19–22.
[7] D. Kirby, Closure Operations on Ideals and Submodules, J. London Math. Soc. 44

(1969), 283–291.
[8] J. Meng and Y. B. Jun, BCK-Algebra, Kyung Moon SA CO., 1994.



402 H. BORDBAR AND M. M. ZAHEDI

[9] E. H. Moore, Introduction to a Form of General Analysis, The New Haven Mathematical
Colloquium, pp. 1–150, Yale University Press, New Haven, 1910.

[10] J. C. Vassilev, Structure on the set of closure operations of a commutative ring, J.
Algebra 321 (2009), no. 10, 2737–2753.

[11] L. J. Ratliff, ∆-closures of ideals and rings, Trans. Amer. Math. Soc. 313 (1989), no.
1, 221–247.

[12] H. Yisheng, BCI-Algebra, Published by Science Press, 2006.

Hashem Bordbar

Faculty of Mathematics

Statistics and Computer Science

Shahid Bahonar University

Kerman, Iran

E-mail address: Bordbar.amirh@gmail.com

Mohammad Mehdi Zahedi

Department of Mathematics

Graduate University of Advanced Technology

Mahan-Kerman, Iran

E-mail address: zahedi−mm@kgut.ac.ir


