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WEIERSTRASS POINTS ON

HYPERELLIPTIC MODULAR CURVES

Daeyeol Jeon

Abstract. In this paper, we find all Weierstrass points on the hyperel-
liptic modular curves X1(N).

1. Introduction

Let X be a compact Riemann surface of genus g ≥ 2. At an arbitrary point
P of X there is in general no function on X that has a pole of order less than
or equal to g at P and is regular elsewhere. Those points P for which such a
function exists are said to be Weierstrass points. There are only finitely many
such points, and if w(X) is their number, then 2g+2 ≤ w(X) ≤ g3 − g. As an
immediate application, the set of Weierstrass points is an invariant of X which
is useful in the study of the automorphism group of X and the fixed points of
automorphisms.

Let H be the complex upper half plane and Γ be a congruence subgroup of
the full modular group SL2(Z). We consider the modular curve X(Γ) obtained
from compactification of the quotient space Γ\H by adding finitely many points
called cusps. For any integer N ≥ 1, we have subgroups Γ(N), Γ1(N), Γ0(N) of
SL2(Z) defined by matrices

(

a b
c d

)

congruent modulo N to ( 1 0
0 1 ), (

1 ∗
0 1 ), (

∗ ∗
0 ∗ ),

respectively. We let X(N), X1(N), X0(N) be the modular curves defined
over Q associated to Γ(N), Γ1(N), Γ0(N), respectively. The X ’s are compact
Riemann surfaces.

TheWeierstrass points ofX1(N) andX0(N) have been investigated by Atkin
[1], Choi [2], Kilger [6], Kohnen [7, 8], Lehner and Newman [9], Ogg [12], Ono
[13], and Rohrlich [14].

On the other hand, Mestre [10] proved that X1(N) is hyperelliptic if and
only if N = 13, 16, 18. A curve is said to be hyperelliptic if its genus is greater
than or equal to 2 and it admits a map of degree 2 to P1.
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In this paper, we find all Weierstrass points on the hyperelliptic modular
curves X1(N).

2. Preliminaries

Let X be a non-singular algebraic curve of genus g ≥ 2 and let P be a point
on X . Consider the following vector spaces:

L(0),L(P ),L(2P ),L(3P ), . . . ,

where L(kP ) is the space of rational functions on X whose order at P is at
least −k and with no other poles. Then the dimension ℓ(kP ) of L(kP ) satisfies
the following two conditions:

(1) 1 = ℓ(0) ≤ ℓ(P ) ≤ ℓ(2P ) ≤ ℓ(3P ) ≤ · · · .
(2) ℓ(kP ) = k − g + 1 for k ≥ 2g − 1.

Thus for a non-Weierstrass point P the sequence of ℓ(kP ) is as follows:

1, 1, . . . , 1, 2, 3, . . . , g − 1, g, g + 1, . . . .

A Weierstrass gap for P is a value of k such that no function on X has a pole
only at P of order k. Thus the gap sequence is

1, 2, . . . , g

for a non-Weierstrass point, and for a Weierstrass point its gap sequence con-
tains at least one number greater than g. If X is a hyperelliptic curve, then
there exist a function f and a point P such that f has a double pole only at
P . Thus such a P has the gap sequence is

(2.1) 1, 3, 5, . . . , 2g − 1.

If 1 = w1, w2, w3, . . . is a gap sequence of a point P , then we define the Weier-

strass weight of P by

wt(P ) =

g
∑

i=1

(wi − i).

By definition, we know that P is a Weierstrass point if and only if wt(P ) > 0.
It is known that

∑

P∈X wt(P ) = g3 − g.
Note that X1(N) → X0(N) is a Galois covering with Galois group Γ0(N)/±

Γ1(N)=
{(

a 0
0 a−1

)

| a ∈ (Z/NZ)∗/{±1}
}

which gives automorphisms onX1(N).
For an integer a prime to N, let [a] denote the automorphism of X1(N) repre-
sented by γ ∈ Γ0(N) such that γ ≡ ( a ∗

0 ∗ ) mod N. Sometimes we regard [a] as
a matrix.

For each divisor d | N with (d,N/d) = 1, consider the matrices of the form
(

dx y
Nz dw

)

with x, y, z, w ∈ Z and determinant d. Then these matrices define a
unique involution on X0(N) which is called the Atkin-Lehner involution and
denoted by Wd. In particular, if d = N, then WN is called the full Atkin-Lehner
involution. We also denote by Wd a matrix of the above form. In general, the
Wd do not define a unique automorphism on X1(N).
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We recall that if a curve X is hyperelliptic, then there exists a unique invo-
lution ν, called a hyperelliptic involution, such that X/〈ν〉 is a rational curve.

According to Ishii-Momose [4], the hyperelliptic involutions on the X1(N)
for N = 13, 16, 18 are [5], [7], and W2, respectively.

For the number of fixed points of an involution, we need the following result:

Proposition 2.1. Let v be any involution on the compact Riemann surface X
and # denote the number of the fixed points of v. Then we have the following

genus formula:

g(v\X) =
1

4
(2g(X) + 2−#).

Proof. It follows from the Hurwitz formula. �

In virtue of [11] we have the following description of cusps. The cusps of
X(N) can be regarded as pairs ± ( xy ), where x, y ∈ Z/NZ, and are relatively
prime, and ( xy ),

(−x
−y

)

are identified. Since Γ1(N)/Γ(N) = {( 1 b
0 1 ) | b ∈ Z/NZ}

operates naturally on the left, and so a cusp of X1(N) can be regarded as an
orbit

{

±
(

x+by
y

)}

. Note that we can choose a representative ( xy ) with x reduced
modulo d = gcd(y,N) and gcd(x, d) = 1. Thus for each d | N with N = 11 or
N > 12, we have 1

2ϕ(d)ϕ(N/d) cusps of X1(N). Given a cusp ( xy ) of X1(N)

it is fixed by
(

a 0
0 a−1

)

∈ Γ0(N)/ ± Γ1(N) if and only if ax ≡ ±x (mod d) and

a−1y ≡ ±y (mod N), i.e., a ≡ ±1 (mod d) and a ≡ ±1 (mod N/d).

3. Weierstrass points

In this section, we determine all Weierstrass points on X1(N) for N =
13, 16, 18. For the purpose we state a well-known lemma as follows:

Lemma 3.1. If X is a hyperelliptic curve of genus g, then X has 2g + 2
Weierstrass points. Moreover, the Weierstrass points are the fixed points of a

hyperelliptic involution.

Proof. Suppose ν is a hyperelliptic involution of X , then we know that ν has
2g + 2 fixed points on X from Proposition 2.1. We can regard the map f :
X → X/〈ν〉 as a function on X of degree 2. Let P be a fixed point on X by ν.
Then the function 1

f−f(P ) has a pole at P of order 2 and it is regular elsewhere.

Thus P is a Weierstrass point of X . From (2.1), we have wt(P ) = g(g−1)
2 . Since

∑

Q∈X wt(Q) = g3−g, there exist at most 2g+2 Weierstrass points. Therefore
X has exactly 2g + 2 Weierstrass points. �

Remark 3.2. It can be shown also by using Schöneberg’s Theorem [15] that the
fixed points of a hyperelliptic involution are Weierstrass points.

Note that each X1(N) for N = 13, 16, 18 has genus 2. Thus, by Lemma 3.1
there exist 2g + 2 = 6 Weierstrass points of X1(N) which are fixed points of a
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hyperelliptic involution. First, consider N = 13. Take

[5] =

(

5 −2
13 −5

)

.

Then it is an elliptic element of Γ0(13), and it fixes ω := 5+i
13 . Each point

τ ∈ H gives a point on X1(N) and X0(N), and let {τ}1 and {τ}0 denote its
corresponding points on X1(N) and X0(N), respectively. The Galois covering
φ : X1(13) → X0(13) is of degree 6 and its Galois group (Z/13Z)∗/{±1} is a
cyclic group generated by [2]. Since Γ1(13) doesn’t contain an elliptic element,
φ is ramified at [ω]0 with ramification index 2. Thus there exist 3 points

{ω}1, {[2]ω}1, {[22]ω}1
lying above [ω]0. One can easily check that [5][2k] = γ[2k][5] for some γ ∈
Γ1(13) where k = 0, 1, 2. Thus [5]{[2k]ω}1 = {[5][2k]ω}1 = {γ[2k][5]ω}1 =
{γ[2k]ω}1 = {[2k]ω}1 for all k = 0, 1, 2, and hence the hyperelliptic involution
[5] fixes all three points as above. According to Corollary 3.7.2 of [3], X0(13)
has two elliptic points. Take

[8] =

(

8 −5
13 −8

)

.

Then it is an elliptic element of Γ0(13), and it fixes ω′ := 8+i
13 . Note that

for any element α ∈ Γ0(13), the isotropy group Γ0(13)α(ω) = αΓ0(13)ωα
−1 =

α〈[5]〉α−1 of α(ω) gives a conjugacy class of a cyclic group of order 4 in Γ0(13).
However Γ0(13)ω′ = 〈[8]〉, and hence {ω}0 6= {ω′}0. Since −5 ≡ 8 (mod 13),
[5]{ω′}1 = {[5]ω′}1 = {[8]ω′}1 = {ω′}1. Thus [5] fixes {ω′}1 and we can check
that it fixes the other two points lying above {ω′}0. Therefore the six points
lying above {ω}0 and {ω′}0 are all Weierstrass points of X1(13).

Next, consider N = 16. In this case there exists no elliptic element of the
form [7], and hence it has no fixed non-cusp point. For any d = 2, 4, 8, the
following two congruences holds:

7 ≡ ±1 (mod d), 7 ≡ ±1 (mod 16/d).

Thus we know that six cusps ( xy ) with gcd(y,N) = d are fixed points of [7]
from the arguments in Section 2, and hence they are all Weierstrass points of
X1(16).

Last, let us consider N = 18. Take

W2 =

(

4 −1
18 −4

)

.

Then it fixes υ := 4+i
√
2

18 . By Proposition 2.1, W2 has two fixed points in
X0(18). The author, Kim and Schweizer [5] proposed an systematic way to
find Γ0(N)-inequivalent fixed points of Wd. Using their method, we can find

the other fixed point {υ′}0 where υ′ := −4+i
√
2

18 . The Galois covering X1(18) →
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X0(18) is of degree 3 and its Galois group (Z/18Z)∗/{±1} is a cyclic group
generated by [5]. One can easily check that

W2[a] ≡ [a]W2 mod Γ1(N).

By the exact same reason as in the case N = 13, the six points lying above
{υ}0 and {υ′}0 are all Weierstrass points of X1(18).

Consequently, we have the following our main result:

Theorem 3.3. All Weierstrass points of X1(N) for N = 13, 16, 18 are listed

in the following:

(1) N = 13;
{

5 + i

13

}

1

,

{

5 + i

26

}

1

,

{

18 + i

65

}

1

,

{

8 + i

13

}

1

,

{

8 + i

65

}

1

,

{

99 + i

338

}

1

.

(2) N = 16;
(

1
2

)

,

(

1
6

)

,

(

1
4

)

,

(

3
4

)

,

(

1
8

)

,

(

3
8

)

.

(3) N = 18;
{

4 + i
√
2

18

}

1

,

{

58 + i
√
2

198

}

1

,

{

22 + i
√
2

54

}

1

,

{

−4 + i
√
2

18

}

1

,

{

590 + i
√
2

1494

}

1

,

{

248 + i
√
2

918

}

1

.
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