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ZERO DIVISOR GRAPHS OF SKEW GENERALIZED POWER

SERIES RINGS

Ahmad Moussavi and Kamal Paykan

Abstract. Let R be a ring, (S,≤) a strictly ordered monoid and ω :
S → End(R) a monoid homomorphism. The skew generalized power se-
ries ring R[[S, ω]] is a common generalization of (skew) polynomial rings,
(skew) power series rings, (skew) Laurent polynomial rings, (skew) group
rings, and Mal’cev-Neumann Laurent series rings. In this paper, we in-
vestigate the interplay between the ring-theoretical properties of R[[S, ω]]

and the graph-theoretical properties of its zero-divisor graph Γ(R[[S, ω]]).
Furthermore, we examine the preservation of diameter and girth of the
zero-divisor graph under extension to skew generalized power series rings.

1. Introduction

The concept of a zero-divisor graph of a commutative ring was introduced
by Beck in [7]. In his work all elements of the ring were vertices of the graph
(see also [3]). In [4], Anderson and Livingston introduced and studied the
zero-divisor graph whose vertices are the non-zero zero-divisors of a ring. This
graph turns out to best exhibit the properties of the set of zero-divisors of a
commutative ring. In [32], Redmond studied the zero-divisor graph of a non-
commutative ring. Several papers are devoted to studying the relationship
between the zero-divisor graph and algebraic properties of rings (cf. [2], [3],
[5], [7], [32], [39]).

The zero-divisors of R, denoted by Z(R), is the set of elements a ∈ R such
that there exists a non-zero element b ∈ R with ab = 0 or ba = 0. Let Z∗(R)
denote the (nonempty) set of nonzero zero divisors. The directed graph Γ(R)
is a graph with vertices in Z∗(R), where x → y is an edge between distinct
vertices x and y if and only if xy = 0. Recently Redmond in [32] has extended
this concept to any arbitrary ring. Redmond in [32] defined an undirected zero-
divisor graph of a non-commutative ring R, denoted by Γ(R), with vertices in
the set Z(R)∗ and such that for distinct vertices a and b are adjacent if and
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only if ab = 0 or ba = 0. Note that for a commutative ring R, the definition of
the zero-divisor graph of R in [4] coincides with the definition of Γ(R).

According to Cohn [12], a ring R is called reversible if ab = 0 implies that
ba = 0 for a, b ∈ R. So, in view of [32, Theorem 2.3], over a reversible ring R,
the simple (undirected) graph Γ(R) is connected with diam(Γ(R)) ≤ 3, where
diam(Γ(R)) is the diameter of Γ(R). In [32] it has been shown that for any
ring R, every two vertices in Γ(R) are connected by a path of length at most 3.
Note that using the proof of this result in commutative case, one can establish
that for any arbitrary ring R, if there exists a path between two vertices x and
y in the directed graph Γ(R), then the length of the shortest path between x
and y is at most 3. Moreover, in [32] it is shown that for any ring R, if Γ(R)
contains a cycle, then the length of the shortest cycle in Γ(R), is at most 4.

There is considerable interest in studying if and how certain graph-theoretic
properties of rings are preserved under various ring-theoretic extensions. The
zero-divisor graphs offer a graphical representation of rings so that we may
discover some new algebraic properties of rings that are hidden from the view-
point of classical ring theorists. For an instance, using the notion of a zero-
divisor graph, it has been proven in [33] that for any finite ring R, the sum
∑

x∈R | rR(x)−ℓR(x) | is even, where rR(x) and ℓR(x) denote the right and left
annihilators of the element x in R, respectively. More recently, Axtell, Coyk-
endall and Stickles, in [6], examined the preservation of diameter and girth of
zero-divisor graphs of commutative rings under extensions to polynomial and
power series rings. Also, Lucas, in [22], continued the studying of the diameter
of polynomial and power series of commutative rings. Moreover, Anderson and
Mulay, in [5], studied the girth and diameter of a commutative ring and inves-
tigated the girth and diameter of polynomial and power series of commutative
rings. For a commutative ring R with a monomorphism α and an α-derivation
δ, Afkhami, Khashyarmanesh and Khorsandi, in [1], compare the diameter (and
girth) of the zero-divisor graphs of R and the Ore extension R[x;α, δ], when
R[x;α, δ] is assumed to be reversible.

In this paper, we propose a unified approach to the preservation and lack
thereof of the diameter and girth of the zero-divisor graph of a non-commutative
ring under extension to skew generalized power series ring constructionR[[S, ω]],
where R is a ring, S is a strictly ordered monoid, and ω : S → End(R) is a
monoid homomorphism (the definition of the ring R[[S, ω]] will be recalled in
Section 2). Since (skew) polynomial rings, (skew) monoid rings, (skew) power
series rings, (skew) Laurent polynomial rings, generalized power series rings,
and Mal’cev-Neumann construction are particular cases of the skew generalized
power series construction R[[S, ω]] (for details see the last part of Section 2),
any studying interplay between the ring-theoretical properties of skew general-
ized power series rings and the graph-theoretical properties of its zero-divisor
has its counterpart for each of the aforementioned ring constructions, and these
counterparts follow immediately from a single proof. We would like to stress
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that using this general approach, in this paper we not only unified the already
known theorems, but also obtained many new results, for several constructions
simultaneously.

The paper is organized as follows. In Section 2, we recall the skew generalized
power series ring construction and show that (skew) polynomial rings, (skew)
Laurent polynomial rings, (skew) power series rings, (skew) Laurent series rings
and (skew) monoid rings are special cases of the construction.

In Section 3, we prove that if R is a S-compatible ring which is not isomor-
phic to Z2 × Z2, then Γ(R) is complete if and only if Γ(R[[S, ω]]) is complete,
where, (S,≤) is a strictly ordered a.n.u.p. monoid, ω : S → End(R) a monoid
homomorphism. Furthermore, in the case when R is S-compatible, we com-
pare the diameter (and girth) of the zero-divisor graphs Γ(R) and Γ(R[[S, ω]]).
Finally we give a complete characterization for the girth of Γ(R[[S, ω]]).

For two distinct vertices a and b in the simple (undirected) graph Γ, the dis-
tance between a and b, denoted by d(a, b), is the length of the shortest path con-
necting a and b, if such a path exists; otherwise we put d(a, b) := ∞. The diame-

ter of a graph Γ is diam(Γ) := sup{d(a, b) | a and b are distinct vertices of Γ}.
The diameter is 0 if the graph consists of a single vertex and a connected graph
with more than one vertex has diameter 1 if and only if it is complete; i.e.,
each pair of distinct vertices forms an edge. The girth of a simple (undirected)
connected graph Γ, denoted by gr(Γ), is the length of the shortest cycle in Γ,
provided Γ contains a cycle; otherwise gr(Γ) := ∞. We will denote by End(R)
the monoid of ring endomorphisms of R, and by Aut(R) the group of ring
automorphisms of R. Also, we use A∗ to denote the nonzero elements of A,
and Z, N, Q, R and Zn for the integers, positive integers, rational numbers,
the field of real numbers and the integers modulo n, respectively. Throughout
this paper all monoids and rings are with identity element that is inherited
by submonoids and subrings and preserved under homomorphisms, but neither
monoids nor rings are assumed to be commutative.

2. Skew generalized power series ring

In order to recall the skew generalized power series ring construction (which
was introduced in [37]) we need some definitions and facts that will also be
used in further reasonings.

A partially ordered set (S,≤) is called artinian if every strictly decreasing
sequence of elements of S is finite, and (S,≤) is called narrow if every subset
of pairwise order-incomparable elements of S is finite. Thus, (S,≤) is artinian
and narrow if and only if every nonempty subset of S has at least one but
only a finite number of minimal elements. finite family of artinian and narrow
subsets of an ordered set as well as any subset of an artinian and narrow set
are again artinian and narrow. An ordered monoid is a pair (S,≤) consisting
of a monoid S and an order ≤ on S such that for all a, b, c ∈ S, a ≤ b implies
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ca ≤ cb and ac ≤ bc. An ordered monoid (S,≤) is said to be strictly ordered if
for all a, b, c ∈ S, a < b implies ca < cb and ac < bc.

For a strictly ordered monoid S and a ring R, Ribenboim [37] defined the
ring of generalized power series R[[S]] consisting of all maps from S to R
whose support is artinian and narrow with the pointwise addition and the
convolution multiplication. This construction provided interesting examples
of rings (e.g., Elliott and Ribenboim, [13]; Ribenboim, [35], [36]) and it was
extensively studied by many authors.

In [25], R. Mazurek and M. Ziembowski, introduced a “twisted” version
of the Ribenboim construction and study when it produces a von Neumann
regular ring. Now we recall the construction of the skew generalized power
series ring introduced in [25]. Let R be a ring, (S,≤) a strictly ordered monoid,
and ω : S → End(R) a monoid homomorphism. For s ∈ S, let ωs denote the
image of s under ω, that is ωs = ω(s). Let A be the set of all functions
f : S → R such that the support supp(f) = {s ∈ S : f(s) 6= 0} is artinian and
narrow. Then for any s ∈ S and f, g ∈ A the set

Xs(f, g) = {(x, y) ∈ supp(f)× supp(g) : s = xy}

is finite. Thus one can define the product fg : S → R of f, g ∈ A as follows:

fg(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v)),

(by convention, a sum over the empty set is 0). With pointwise addition and
multiplication as defined above, A becomes a ring, called the ring of skew

generalized power series with coefficients in R and exponents in S (one can
think of a map f : S → R as a formal series

∑

s∈S rss, where rs = f(s) ∈ R)

and denoted either by R[[S≤, ω]] or by R[[S, ω]] (see [24] and [25]).
We will use the symbol 1 to denote the identity elements of the monoid S,

the ring R, and the ring R[[S, ω]], as well as the trivial monoid homomorphism
1 : S → End(R) that sends every element of S to the identity endomorphism.
To each r ∈ R and s ∈ S, we associate elements cr, es ∈ R[[S, ω]] defined by

cr(x) =

{

r x = 1
o x ∈ S \ {1}, es(x) =

{

1 x = s
o x ∈ S \ {s}.

It is clear that r → cr is a ring embedding of R into R[[S, ω]] and s → es is
a monoid embedding of S into the multiplicative monoid of the ring R[[S, ω]],
and escr = cωs(r)es. For every nonempty subset X of R, we denote:

X [[S, ω]] = {f ∈ R[[S, ω]] | f(s) ∈ X ∪ {0} for every s ∈ S}.

Below we show how the classical ring aforementioned ring constructions in
Section 1 can be viewed as special cases of the skew generalized power series
ring construction.



ZERO DIVISOR GRAPHS OF SKEW GENERALIZED POWER SERIES RINGS 367

Let R be a ring and σ an endomorphism of R. Then for the additive monoid
S = N ∪ {0} of nonnegative integers, the map ω : S → End(R) given by

ω(n) = σn for any n ∈ S,(2.1)

is a monoid homomorphism. If furthermore σ is an automorphism of R, then
2.1 defines also a monoid homomorphism ω : S → Aut(R) for S = Z, the
additive monoid of integers. We can consider two different orders on each of
the monoids N ∪ {0} and Z: the trivial order (i.e., the order with respect to
which any two distinct elements are incomparable) and the natural linear order.
In both cases these monoids are strictly ordered, and thus in each of the cases
we can construct the skew generalized power series ring R[[S, ω]]. As a result,
we obtain the following extensions of the ring R:

(1) If S = N ∪ {0} and ≤ is the trivial order, then the ring R[[S, ω]] is
isomorphic to the skew polynomial ring R[x, σ].

(2) If S = N ∪ {0} and ≤ is the natural linear order, then R[[S, ω]] is
isomorphic to the skew power series ring R[[x;σ]].

(3) If S = Z and ≤ is the trivial order, and σ is an automorphism of
R, then R[[S, ω]] is isomorphic to the skew Laurent polynomial ring
R[x, x−1;σ].

(4) If S = Z and ≤ is the natural linear order, and σ is an automor-
phism of R, then R[[S, ω]] is isomorphic to the skew Laurent series ring
R[[x, x−1;σ]].

By applying the above points (1)-(4) to the case where σ is the identity map
of R, we can see that also the following ring extensions are special cases of the
skew generalized power series ring construction: the ring of polynomials R[x],
the ring of power series R[[x]], the ring of Laurent polynomials R[x, x−1], and
the ring of Laurent series R[[x, x−1]].

Furthermore, any monoid S is a strictly ordered monoid with respect to the
trivial order on S. Hence if R is a ring, S is a monoid and ω : S → End(R)
is a monoid homomorphism, then we can impose the trivial order on S and
construct the skew generalized power series ring R[[S, ω]], which in this case
will be denoted by R[S, ω]. It is clear that the ring R[S, ω] is isomorphic to
the classical skew monoid ring built from R and S using the action ω of S on
R. If ω is trivial, we write R[S] instead of R[S, ω]. Obviously the ring R[S] is
isomorphic to the ordinary monoid ring of S over R.

Also, the construction of skew generalized power series rings generalizes an-
other classical ring constructions such as the Mal’cev-Neumann Laurent series
rings ((S,≤) a totally ordered group and trivial ω; see [11], p. 528), the Mal’cev-
Neumann construction of twisted Laurent series rings ((S,≤) a totally ordered
group; see [19], p. 242), and generalized power series rings R[[S]] (trivial ω;
see [37], Section 4), twisted generalized power series rings (see [21, Section 2],
[25]).
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Recall that a monoid S is called a unique product monoid (or a u.p. monoid,
or u.p.) if for any two nonempty finite subsets X ;Y ⊆ S there exist x ∈ X and

y ∈ Y such that xy 6= x
′

y
′

for every (x
′

, y
′

) ∈ X × Y \ {(x, y)}; the element xy
is called a u.p. element of XY = {st : s ∈ X, t ∈ Y }. Unique product monoids
and groups play an important role in ring theory, for example providing a pos-
itive case in the zero-divisor problem for group rings (see also [9]), and their
structural properties have been extensively studied (see [14]). The class of u.p.
monoids includes the right and the left totally ordered monoids, submonoids
of a free group, and torsionfree nilpotent groups. Every u.p.-monoid S is can-
cellative and has no non-unity element of finite order. For our purposes, the
following more stringent conditions are needed.

Definition 2.1 ([24, Definition 4.11]). Let (S,≤) be an ordered monoid. Then
(S,≤) is called an artinian narrow unique product monoid (or an a.n.u.p.
monoid, or simply a.n.u.p.) if for every two artinian and narrow subsets X and
Y of S there exists a u.p. element in the product XY . Also (S,≤) is called
quasitotally ordered (and that ≤ is a quasitotal order on S) if ≤ can be refined
to an order � with respect to which S is a strictly totally ordered monoid.

For any ordered monoid (S,≤), the following chain of implications holds:

S is commutative, torsion-free, and cancellative

⇓
(S,≤) is quasitotally ordered

⇓
(S,≤) is a.n.u.p.

⇓
S is u.p.

The converse of the bottom implication holds if ≤ is the trivial order. For
more details, examples, and interrelationships between these and other condi-
tions on ordered monoids, we refer the reader to [23].

3. Diameter and Girth of Γ(R) and Γ(R[[S, ω]])

There is considerable interest in studying if and how certain graph-theoretic
properties of rings are preserved under various ring-theoretic extensions. In
this section, we examine the preservation and lack thereof of the diameter and
girth of the zero-divisor graph of a noncommutative ring under extension to
skew generalized power series ring.

According to Krempa [18], an endomorphism α of a ring R is said to be rigid
if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be α-rigid if there
exists a rigid endomorphism α of R. In [16], the first author and E. Hashemi
introduced α-compatible rings and studied their properties. A ring R is called
α-compatible if for each a, b ∈ R, ab = 0 if and only if aα(b) = 0.
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Basic properties of rigid and compatible endomorphisms, proved by the au-
thors in [16, Lemmas 2.2 and 2.1] are summarized here:

Lemma 3.1. Let α be an endomorphism of a ring R. Then:

(i) if α is compatible, then α is injective;
(ii) α is compatible if and only if for all a, b ∈ R, α(a)b = 0 ⇔ ab = 0;
(iii) the following conditions are equivalent:

(1) α is rigid;
(2) α is compatible and R is reduced;
(3) for every a ∈ R, α(a)a = 0 implies that a = 0.

G. Marks, R. Mazurek and M. Ziembowski in [24] extended these in:

Definition 3.2 ([24]). Let R be a ring, (S,≤) a strictly ordered monoid and
ω : S → End(R) a monoid homomorphism. The ring R is said to be S-
compatible (resp. S-rigid) if ωs is compatible (resp. rigid) for every s ∈ S.

By [24], a ring R is (S, ω)-Armendariz if whenever fg = 0 for f, g ∈ R[[S, ω]],
then f(s)ωs(g(t)) = 0 for all s, t ∈ S, where (S,≤) is a strictly ordered monoid,
and ω : S → End(R) a monoid homomorphism. For more details and results
of (S, ω)-Armendariz ring see [24] and [31].

Theorem 3.3. Let R 6∼= Z2 ×Z2 be a ring, S an a.n.u.p. monoid and ω : S →
End(R) a monoid homomorphism. Assume that R is S-compatible. Then Γ(R)
is complete if and only if Γ(R[[S, ω]]) is complete.

Proof. Assume that Γ(R) be complete, we will show that Γ(R[[S, ω]]) is com-
plete. Since R is not isomorphic to Z2 ×Z2, by [2, Theorem 5] we deduce that
Z(R)2 = 0 and Z(R) is an ideal of R. Now, since R is S-compatible, it is easy
to show that R := R

Z(R) is (S, ω)-rigid, where ω : S → End( R
Z(R) ) is the induced

monoid homomorphism. Now, we claim that Z(R[[S, ω]]) ⊆ Z(R)[[S, ω]]. Sup-
pose towards a contradiction that f ∈ Z(R[[S, ω]]) \ Z(R)[[S, ω]]. Then there
exists a nonzero element g ∈ R[[S, ω]] such that fg = 0. We will prove that
g 6= 0. Assume on the contrary that our assertion fails and g ∈ Z(R)[[S, ω]].
Now, we have the following two cases.

Case (1) Let f(s) 6∈ Z(R) for all s ∈ supp(f).
Since (S,≤) is a strictly ordered a.n.u.p.-monoid, there exist s ∈ supp(f) and
t ∈ supp(g) such that st is a u.p. element of supp(f)supp(g). Since st is a u.p.
element, it follows that 0 = (fg)(st) = f(s)ωs(g(t)). Now, the S-compatibility
ofR implies that f(s)g(t) = 0. Therefore f(s) ∈ Z(R), which is a contradiction.

Case (2) Let D := {s ∈ supp(f) | f(s) ∈ Z(R)} be nonempty. Setting:

h(s) :=

{

f(s) s ∈ D

0 s 6∈ D
and k(s) :=

{

f(s) s 6∈ D

0 s ∈ D.

We obtain maps h, k : S → R with supp(h) = D and supp(k) = D
c ∩

supp(f). Since supp(f) is artinian and narrow thus h, k ∈ R[[S, ω]]. Since
g ∈ Z(R)[[S, ω]] and Z(R)2 = 0, we have h(u)g(v) = 0 for each u, v ∈ S.
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Now, the S-compatibility of R implies that hg = 0. Therefore kg = 0. By
a similar argument, there exist s ∈ supp(k) and t ∈ supp(g) such that st is
a u.p. element of supp(k)supp(g). Since st is a u.p. element, it follows that
0 = (kg)(st) = k(s)ωs(g(t)). Using the S-compatibility of R, we find that
k(s)g(t) = 0. Therefore k(s) = f(s) ∈ Z(R), which is a contradiction.

Therefore we conclude that g 6= 0. Since R is (S, ω)-rigid, the ring R is
(S, ω)-Armendariz, by [24, Theorem 4.12]. Now, since fg = 0 and f, g 6= 0,

there exist s ∈ supp(f) and t ∈ supp(g) such that f(s)g(t) = 0, contrary to the
fact that R is domain. Therefore Z(R[[S, ω]]) ⊆ Z(R) ∗ S.

Now, assume that f , g are two distinct elements in Z∗(R[[S, ω]]). Thus
f(s), g(s) ∈ Z(R) for all s ∈ S. Since Z(R)2 = 0 and R is S-compatible,
aωs(b) = 0 for every s ∈ S and a, b ∈ Z∗(R). Therefore

fg(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v)) = 0

for every s ∈ S. So Γ(R[[S, ω]]) is complete. The converse follows directly
from the fact that Γ(R) is an induced subgraph of Γ(R[[S, ω]]), and the proof
is complete. �

Remark 3.4. If R ∼= Z2 × Z2, then Γ(R) = 1. Now, let ω : S → End(R) be the
monoid homomorphism defined by ωs(a, b) = (b, a), for all s ∈ S. Suppose that
f = c−(0,1) + c(0,1)es and g = c(0,1) + c(0,1)es in R[[S, ω]], for all s ∈ S \ {1}.
Then fg 6= 0, but c(1,0)f = c(1,0)g = 0. So f − c(1,0) − g is a path in R[[S, ω]]

and thus diam(Γ(R[[S, ω]])) ≥ 2.

Now, we provide the following example to support given Theorem 3.3.

Example 3.5. Assume that D be a domain. Put:

R :=

{(

a b
0 a

)

| a, b ∈ D

}

.

Let S be either Q or R or Q+ = {a ∈ Q | a ≥ 0} or R+ = {a ∈ R | a ≥ 0}
where ≤ is the usual order. Suppose that ω : S → End(D) be a monoid
homomorphism such that ωs is injective for all s ∈ S \ {1}. Then Γ(R) is
complete, since Z(R)∗ = {( 0 b

0 0 ) | b ∈ D∗}. Also, it is easy to show that R is
(S, ω)-compatible, where ω : S → End(R) is a monoid homomorphism given
by ωs((aij)) = (ωs(aij)) for all s ∈ S. Therefore Γ(R[[Q, ω]]), Γ(R[[R, ω]]),

Γ(R[[Q+, ω]]), and Γ(R[[R+, ω]]) are complete, by Theorem 3.3.

Theorem 3.3 extends and unifies [2, Theorem 6] and [6, Theorem 3.2].
Furthermore, the following corollaries leads to interplay between the ring-
theoretical properties in more extensions of rings and the graph-theoretical
properties of its zero-divisor.

Corollary 3.6. Let R 6∼= Z2 × Z2 be a ring and S a u.p. monoid. Then Γ(R)
is complete if and only if Γ(R[S]) is complete, where R[S] is the monoid ring.



ZERO DIVISOR GRAPHS OF SKEW GENERALIZED POWER SERIES RINGS 371

If R is a ring, (S,≤) a totally ordered group and ω : S → Aut(R) a group
homomorphism, then the skew generalized power series ring R[[S, ω]] is called
the Mal’cev-Neumann ring of twisted Laurent series and denoted by R((S, ω))
(see [19], p. 242).

Corollary 3.7. Let R be a ring which is not isomorphic to Z2×Z2. Let (S,≤)
be a totally ordered group and ω : S → Aut(R) a group homomorphism such

that R is S-compatible. Then Γ(R) is complete if and only if Γ(R((S, ω))) is

complete.

Let R be a ring, and consider the multiplicative monoid N≥1, endowed with
the usual order ≤. Then A = R[[N≥1]] is the ring of arithmetical functions

with values in R, endowed with the Dirichlet convolution:

fg(n) =
∑

d|n

f(d)g(n/d) for each n ≥ 1.

Corollary 3.8. Let R be a ring which is not isomorphic to Z2 × Z2. Then

Γ(R) is complete if and only if Γ(R[[N≥1]]) is complete.

Corollary 3.9. Let (S1,≤1), . . . , (Sn,≤n) be strictly totally ordered monoids.

Denote by (lex ≤) and (relex ≤) the lexicographic order, the reverse lexico-

graphic order, respectively, on the monoid S1 × · · · × Sn. Let R 6∼= Z2 × Z2 be

a ring and ω : S1 × · · · × Sn → End(R) is a monoid homomorphism such that

R is S1 × · · · × Sn-compatible. Then the following statements are equivalent.

(1) Γ(R[[S1 × · · · × Sn, ω, lex ≤]]) is complete;
(2) Γ(R[[S1 × · · · × Sn, ω, relex ≤]]) is complete;
(3) Γ(R) is complete.

Let α and β be endomorphisms (resp. automorphisms) of R such that
αβ = βα. Let S = (N ∪ {0}) × (N ∪ {0}) (resp. Z × Z) be endowed the
lexicographic order, or the reverse lexicographic order, or the product order of
the usual order of N ∪ {0} (resp. Z), and define ω : S → End(R) a monoid
homomorphism via ω(m,n) = αmβn for any m,n ∈ N ∪ {0} (resp. m,n ∈ Z).
Then R[[S, ω]] ∼= R[[x, y;α, β]] (resp. R[[S, ω]] ∼= R[[x, y, x−1, y−1;α, β]]), in
which (axmyn)(bxpyq) = aαmβn(b)xm+pyn+q for any m,n, p, q ∈ N∪{0} (resp.
m,n, p, q ∈ Z).

Corollary 3.10. Let R 6∼= Z2 × Z2 be a ring, α and β be automorphisms of

R such that αβ = βα and T = R[[x, y;α, β]] or T = R[[x, y, x−1, y−1;α, β]].
Assume that R is (α, β)-compatible. Then Γ(R) is complete if and only if Γ(T )
is complete.

Let (S,≤) be a strictly commutative totally ordered monoid which is also
artinian. Then the set Xs = {(u, v) | uv = s, u, v ∈ S} is finite for any s ∈ S.
Let V be a free abelian additive group with the base consisting of elements
of S. It was noted in [20, Remark 1.2] that V is a coalgebra over Z with the
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comultiplication map and the counit map as follows:

△(s) =
∑

(u,v)∈Xs

u⊗ v, ǫ(s) =

{

1 s = 1
o s 6= 1,

and R[[S]] ∼= Hom(V,R), the dual algebra with multiplication

f ∗ g = (f ⊗ g)△ for each f, g ∈ Hom(V,R).

Corollary 3.11. Let R 6∼= Z2 × Z2 be a ring, (S,≤) be a strictly commutative

totally ordered monoid which is also artinian and Hom(V,R) defined as above.

Then Γ(R) is complete if and only if Γ(Hom(V,R)) is complete.

Assume that S = Zn (resp. (N ∪ {0})n) be endowed the trivial order and
for each i, let σi be a ring automorphism (resp. endomorphism) of R. Suppose
that σiσj = σjσi for all i, j. Define ω : S → End(R) via ω(k1, k2, . . . , kn) =

σk1

1 σk2

2 · · ·σkn

n . Then we have R[[S, ω]] ∼= R[x1, x2, . . . , xn, x
−1
1 , x−1

2 , . . . , x−1
n ;

σ1, σ2, . . . , σn] (resp. R[[S, ω]] ∼= R[x1, x2, . . . , xn;σ1, σ2, . . . , σn]).

Corollary 3.12. Let R 6∼= Z2 × Z2 be a ring and σ1, σ2, . . . , σn are automor-

phisms of R such that σiσj = σjσi for all i, j. If R is σi-compatible for each i,
then the following are equivalent:

(1) Γ(R) is complete;
(2) Γ(R[x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n ;σ1, σ2, . . . , σn]) is complete;

(3) Γ(R[x1, x2, . . . , xn;σ1, σ2, . . . , σn]) is complete.

Proof. Note that S = Zn (resp. (N ∪ {0})n) is an a.n.u.p. monoid. �

Let R be a ring and G a group acting on R by means of a homomorphism
into the automorphism group of R. We define ω : G → End(R) via ω(g) = g
for each g ∈ G. Let ≤ be the trivial order of G. Then it is easy to see that
R[[G,ω]] = R ∗G, the skew group ring of G with coefficients in R.

Skew group ring R ∗G is an important tool for Galois theory because it is
related to the fixed ring RG. The skew group ring R ∗G and the fixed ring RG

have been extensively studied in ([8], [10], [15], [26]) when G is X-outer or R
has no |G|-torsion.
Corollary 3.13. Let R 6∼= Z2×Z2 be a ring, G any abelian, torsion-free group

acting on R as a group of automorphisms. Assume that R is G-compatible.

Then Γ(R) is complete if and only if Γ(R ∗G) is complete.

Remark 3.14. For a commutative ring with identity R, the collection of zero-
divisors Z(R) of R is the set-theoretic union of prime ideals

⋃

i∈Λ Pi. We will
also assume that these primes are maximal with respect to being contained
in Z(R). So if diam(Γ(R)) ≤ 2 and Λ is a finite set (in particular if R is
Noetherian), in view of [6, Corollary 3.5], |Λ| ≤ 2.

Proposition 3.15 ([6, Proposition 3.6]). Let R be a commutative ring such

that diam(Γ(R)) = 2. If Z(R) = P1 ∪ P2 with P1 and P2 distinct maximal



ZERO DIVISOR GRAPHS OF SKEW GENERALIZED POWER SERIES RINGS 373

primes in Z(R), then P1∩P2 = {0} (in particular, for all p1 ∈ P1 and p2 ∈ P2,

p1p2 = 0).

Theorem 3.16 ([34, 3.6]). Let S be commutative, torsion-free, and cancella-

tive monoid, R be a commutative Noetherian ring and the zero ideal has an

irredundant primary decomposition 0 = Q1 ∩ · · · ∩Qn with
√
Qi = Pi for every

i = 1, . . . , n. If f ∈ R[[S]], then the following conditions are equvalent:

(1) f is zero divisor in R[[S]];
(2) There exists i such that f ∈ Pi[[S]];
(3) There exists 0 6= r ∈ R such that rf(s) = 0 for every s ∈ S.

Theorem 3.17. Let R be a commutative Noetherian ring, S a commutative,

torsion-free, and cancellative monoid. If diam(Γ(R)) = 2, then

diam(Γ(R[[S]])) = 2.

Proof. By Remark 3.14, either Z(R) = P1∪P2 union of precisely two maximal
primes in Z(R), or Z(R) = P is a prime ideal.

Case (1) Suppose that Z(R) = P1∪P2 is the union of precisely two maximal
primes in Z(R). Let f and g be two distinct elements in Z∗(R[[S]]). By
Theorem 3.16, f(s), g(s) ∈ Z(R) for all s ∈ S. Then it is necessary for f (and
hence g) to be contained in P1[[S]] or P2[[S]]. Because otherwise there exist
f(s) ∈ P1 \ P2 and f(t) ∈ P2 \ P1 such that f(s)r = 0 and f(t)r = 0 for some
nonzero element r of R and s, t ∈ S. Thus r ∈ P1∩P2, contrary to the fact that
P1 ∩ P2 = {0}, by Proposition 3.15. So, we have two cases. Firstly, suppose
that f ∈ P1[[S]] and g ∈ P2[[S]]. Then, by Proposition 3.15, f(s)g(t) = 0 for
all s, t ∈ S. Hence fg = 0. Now, consider the case that f, g ∈ P1[[S]]. Then
any element of P2 suffices as a mutual annihilator. Thus diam(Γ(R[[S]])) = 2.

Case (2) Assume that Z(R) = P is a prime ideal. By [17, Theorem 82], P
is annihilated by a single element (say z). Suppose that f, g are zero-divisors.
If fg = 0, we are done. If fg 6= 0, then z is a mutual annihilator of f and g,
by Theorem 3.16. �

Proposition 3.18. Let R 6∼= Z2 × Z2 be a ring, S an a.n.u.p. monoid and

ω : S → End(R) a monoid homomorphism. If R is S-compatible and

diam(Γ(R[[S, ω]])) = 2,

then diam(Γ(R)) = 2.

Proof. It is easy to show that diam(Γ(R)) ≤ diam(Γ(R[[S, ω]])). Now, the
result follows from Theorem 3.3. �

As an immediate consequence of Theorem 3.17 and Proposition 3.18, we
obtain the following generalization of [6, Theorem 3.11].

Corollary 3.19. Let R 6∼= Z2 × Z2 be a commutative Noetherian ring with

nontrivial zero-divisors. Then the following conditions are equivalent:

(1) diam(Γ(R)) = 2;
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(2) diam(Γ(R[x])) = 2;
(3) diam(Γ(R[x1, x2, . . . , xn])) = 2;
(4) diam(Γ(R[x, x−1])) = 2;
(5) diam(Γ(R[x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n ])) = 2;

(6) diam(Γ(R[S])) = 2, where S is a commutative, torsion-free, and can-

cellative monoid;
(7) diam(Γ(R[[x]])) = 2;
(8) diam(Γ(R[[x1, x2, . . . , xn]])) = 2;
(9) diam(Γ(R[[x, x−1]])) = 2;
(10) diam(Γ(R[[x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n ]])) = 2;

(11) diam(Γ(R[[N≥1]])) = 2, where R[[N≥1]] is the ring of arithmetical func-

tions with values in R;
(12) diam(Γ(R((S)))) = 2, where R((S)) is the Mal’cev-Neumann construc-

tion and (S,≤) is a totally ordered abelian group.

Recall from [30] that a ring R is called right (S, ω)-McCoy if whenever
elements f, g ∈ R[[S, ω]] \ {0} satisfy fg = 0, then there exists 0 6= r ∈ R such
that fr = 0, where (S,≤) is a strictly ordered monoid, and ω : S → End(R)
a monoid homomorphism. Left (S, ω)-McCoy rings is defined similarly. If R is
both left and right (S, ω)-McCoy, then we say R is (S, ω)-McCoy ring. Note
that every S-compatible and (S, ω)-Armendariz ring is a (S, ω)-McCoy ring.
For more details and results of (S, ω)-McCoy ring see [30].

Proposition 3.20. Let R 6∼= Z2×Z2 be a ring, S a monoid and ω : S → End(R)
a monoid homomorphism. If R is (S, ω)-McCoy, S-compatible and for some

n ∈ Z with n > 2, (Z(R))n = 0 such that (Z(R))n−1 6= 0, then

diam(Γ(R)) = diam(Γ(R[[S, ω]])) = 2.

Proof. Since the ring R is not isomorphic to Z2 × Z2 and (Z(R))2 6= 0, by
[2, Theorem 5], Γ(R) is not complete. Hence, there exist distinct a, b ∈ Z(R)
with ab 6= 0 and ba 6= 0. On the other hand, since (Z(R))n−1 6= 0, there exist

d1, d2, . . . , dn ∈ Z(R) with d =
∏n−1

i=1 di 6= 0. Therefore, ad = 0 = bd, since

(Z(R))n = 0. So a− d− b is a path in R and hence diam(Γ(R)) = 2. Now, it
is sufficient to prove that diam(Γ(R[[S, ω]])) = 2. Let f and g be two distinct
element in Z∗(R[[S, ω]]). Since R is (S, ω)-McCoy, thus f(s), g(s) ∈ Z(R) for
all s ∈ S. Hence the S-compatibility of R yields either f − g or f − cd − g.
Therefore diam(Γ(R[[S, ω]])) = 2, and the proof is complete. �

Proposition 3.21. Let R be a ring which is not a domain, S a nontrivial

monoid and ω : S → End(R) a monoid homomorphism. Assume that R is

S-compatible. Then gr(Γ(R[[S, ω]])) is either 3 or 4. In particular, if R is not

reduced and S is a.n.u.p. monoid, then gr(Γ(R[[S, ω]])) = 3.

Proof. Let ab = 0 for distinct elements a, b ∈ Z∗(R). Using the S-compatibility
of R, we find that aωs(b) = 0 for all s ∈ S \ {1}. Hence ca − cb − caes − cbes −
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ca is a 4-cycle in R[[S, ω]]. Let a2 = 0 for some a ∈ Z∗(R). Then the S-
compatibility of R and the hypothesis that (S,≤) is a.n.u.p. monoid, yields
ca − caes − caes2 − ca is a 3-cycle in R[[S, ω]], for all s ∈ S \ {1}. �

Theorem 3.22. Let R be a ring, S a nontrivial a.n.u.p. monoid and ω : S →
End(R) a monoid homomorphism. If R is S-rigid and Γ(R) contains a cycle,

then gr(Γ(R)) = gr(Γ(R[[S, ω]])).

Proof. If Z∗(R) = ∅, then gr(Γ(R)) = ∞ = gr(Γ(R[[S, ω]])). So we may as-
sume Z∗(R) 6= ∅. Since the graph Γ(R) is an induced subgraph of Γ(R[[S, ω]]),
we have that gr(Γ(R)) ≥ gr(Γ(R[[S, ω]])). Also, by Proposition 3.21,

gr(Γ(R[[S, ω]])) ≤ 4.

Furthermore, since Γ(R) contains a cycle, by [32], gr(Γ(R)) ≤ 4. So it suffices
to show that gr(Γ(R)) = 3, whenever gr(Γ(R[[S, ω]])) = 3. So suppose that
f − g − h − f is a cycle in R[[S, ω]]. Since fg = gh = hf = 0 thus by
[24, Theorem 4.12], we have f(u)g(v) = g(v)h(w) = h(w)f(v) = 0 for all
u, v, w ∈ S. We may assume f(u0), g(v0) and h(w0) are non-zero elements
in R. Therefore f(u0)g(v0) = g(v0)h(w0) = h(w0)f(v0) = 0. Moreover, the
elements f(u0), g(v0) and h(w0) are distinct, since R is reduced, by Lemma
3.1. Now consider the cycle f(u0) − g(v0) − h(w0) − f(u0) of length three in
Γ(R). Therefore gr(Γ(R)) = 3, and hence gr(Γ(R)) = gr(Γ(R[[S, ω]])), and
the result follows. �

A complete characterization for the girth of gr(Γ(R[x])) and gr(Γ(R[[x]]))
in terms of gr(Γ(R)) is given in [5, Theorem 3.2]. In the following we explain
Theorem 3.2 in [5] in the context of skew generalized power series extension
rings.

Corollary 3.23. Let R be a ring, S a nontrivial a.n.u.p. monoid and ω : S →
End(R) a monoid homomorphism. Assume that R is S-compatible.

(1) Suppose that Γ(R) is nonempty with gr(Γ(R)) = ∞.

(i) If R is reduced, then gr(Γ(R[[S, ω]])) = 4;
(ii) If R is not reduced, then gr(Γ(R[[S, ω]])) = 3.

(2) If gr(Γ(R)) = 3, then gr(Γ(R[[S, ω]])) = 3.
(3) Suppose that gr(Γ(R)) = 4.

(i) If R is reduced, then gr(Γ(R[[S, ω]])) = 4;
(ii) If R is not reduced, then gr(Γ(R[[S, ω]])) = 3.

Proof. We have already observed in Proposition 3.21 that gr(Γ(R[[S, ω]]))) = 3
if R is not reduced. Thus (1)(ii) and (3)(ii) hold. By using the proof of
Theorem 3.22, if R is reduced and gr(Γ(R[[S, ω]])) = 3, then gr(Γ(R)) = 3.
Now, since gr(Γ(R[[S, ω]])) ≤ 4, by Proposition 3.21, and thus (1)(i) and (3)(i)
hold. Clearly (2) holds since gr(Γ(R)) ≥ gr(Γ(R[[S, ω]])). �
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