
Commun. Korean Math. Soc. 30 (2015), No. 4, pp. 349–361
http://dx.doi.org/10.4134/CKMS.2015.30.4.349

COREGULARITY OF ORDER-PRESERVING SELF-MAPPING

SEMIGROUPS OF FENCES

Ketsarin Jendana and Ratana Srithus

Abstract. A fence is an ordered set that the order forms a path with
alternating orientation. Let F = (F ;≤) be a fence and let OT (F) be
the semigroup of all order-preserving self-mappings of F. We prove that
OT (F) is coregular if and only if |F | ≤ 2. We characterize all coregular
elements in OT (F) when F is finite. For any subfence S of F, we show
that the set COTS(F) of all order-preserving self-mappings in OT (F)
having S as their range forms a coregular subsemigroup of OT (F). Under
some conditions, we show that a union of COTS(F)’s forms a coregular

subsemigroup of OT (F).

1. Introduction and preliminaries

Let X be an arbitrary set and let T (X) be the semigroup of self-mappings
of X . The semigroup T (X) is well-studied.

Consider X as the base set of an algebraic or relational structure X such as
a vector space, a topological space, a unary algebra, an ordered set, a graph,
etc.

A mapping α : X → X is called an endomorphism of X if α preserves the
structure ofX. For example, every endomorphism ofX is a continuous mapping
if X is a topological space. If X is an ordered set, then an endomorphism of
X is an order-preserving self-mapping, that is, if x ≤ y, then α(x) ≤ α(y). For
an ordered set X, we denote by OT (X) the semigroup of all order-preserving
self-mappings of X.

The semigroup of all endomorphisms of X have been widely investigated. In
[7], Gluskin showed that if OT (X) is isomorphic to OT (Y), then the ordered
sets X and Y are isomorphic or anti-isomorphic. Lyapin [10] characterized
the semigroups of endomorphisms of a relation structure. Cezus, Magill and
Subbiah [2] proved that the semigroup of all linear transformations of a vec-
tor space V over a division ring can be used to determine that V is finite
dimensional. In [14], Radaleczki showed the connection between the congru-
ence lattice of a unary algebra X and the automorphism group of X. Higgins,
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Mitchell and Ruškuc [8] found that the rank of the semigroup T (X) is related
to the semigroups OT (X) for some chains X = (X ;≤). Later, Pozdnyakova
[13] showed that the infinite monounary algebras satisfying some certain con-
ditions are determined by their semigroups of endomorphisms. These results
show that the endomorphism semigroup can be used to determine the structure
of the initial algebraic system. Such semigroups play an important role in the
study of algebraic systems.

In Semigroup Theory the concept of regularity is one of the most-studied
topics. There have been many research works studying regularity of semi-
groups, especially endomorphism semigroups of algebraic structures (see [12],
[9], [11] and [16]).

A special case of a regular element is a coregular element. An element a in a
semigroup S is called coregular if there is an element b ∈ S with aba = a = bab

and S is called coregular if every element of S is coregular. Coregular semigroup
was first introduced and studied in [1] by Bijev and Todorov. They proved that
a semigroup S is coregular if and only if a3 = a for all a ∈ S. It can prove that
an element a in a semigroup S is coregular if and only if a3 = a. Chvalina and
Matoušková [3] gave a necessary and sufficient condition for endomorphisms
of a unary algebra to be coregular. In [5] Dimitrova and Koppitz showed
the description of coregular subsemigroups of the symmetric semigroup of self-
mappings on an n-element set.

A fence F is an ordered set (F ;≤) in which either

a1 < a2 > a3, . . . , a2m−1 > a2m < a2m+1, . . .

or

a1 > a2 < a3, . . . , a2m−1 < a2m > a2m+1, . . .

are the only comparability relations where F = {a1, a2, . . . , an, . . . }. Every
element in F is minimal or maximal. If a1 < a2, then F is called an up fence

and it is called a down fence if a1 > a2. For x, y ∈ F , we define the distance
d(x, y) from x to y in F by

d(x, y) = inf{|S| − 1 | S is a subfence of F and x, y ∈ S}.

Algebraic properties of order-preserving self-mappings of fences have been long
considered. Demetrovics and Rónyai [4] studied the clones of all order-preserv-
ing operations for fences. In [15], Rutkowski gave the formula for the number
of order-preserving self-mappings of a fence. Later, Farley [6] computed the
number of order-preserving self-mappings of a fence.

In this paper, our main purpose is to investigate the coregularity of the
semigroup of order-preserving self-mappings of a fence. Throughout we use
ranα to denote the range of a mapping α and the nth composition of α is
denoted by αn.

It is known that for an ordered set X, the identity mapping idX and a
constant mapping ca which maps all elements in X into a are order-preserving.
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Because of (idX)3(x) = x = idX(x) and (ca)
3(x) = a = ca(x) for all x ∈ X , we

get that idX and ca are coregular elements in OT (X).
Consider the 4-element fence F = (F ;≤) as shown in Figure 1. Define

a c

db

Figure 1. The 4-element fence F

α : F → F by α(a) = b = α(b), α(c) = a and α(d) = b. It is easy to verify that
α is order-preserving and so, α ∈ OT (F). By the definition of α,

α3(c) = α(α(α(c))) = α(α(a)) = α(b) = b 6= a = α(c).

Hence, α is not coregular and therefore, OT (F) is not a coregular semigroup.
If F is an 1-element fence, then OT (F) is the set of a constant mapping.

Hence, OT (F) is a coregular semigroup. It is natural to ask when the semigroup
OT (F) is coregular. In Section 2 we give a necessary and sufficient condition
for OT (F) to be coregular. We also study properties of coregular elements of
OT (F). Because every α in OT (F) need not be coregular, in Section 3 we
completely describe the coregular elements of OT (F). Finally, in Section 4 is
devoted to the study of coregular subsemigroups of OT (F).

2. Coregular elements in OT (F) and their properties

We now investigate properties of coregular elements of OT (F). To do so
we need a result concerning preserving subfences of an order-preserving self-
mapping of a fence F. An ordered set P is called connected if for all a, b ∈ P

there is a fence F ⊆ P with endpoints a and b. It is well known that if P
is connected and α : P → Q is order-preserving, then α(P ) is connected.
Consequently, every order-preserving mapping maps order-connected sets to
order-connected set. Because order-connected subsets of a fence F are precisely
the subfences, an order-preserving mapping α : F → F maps subfences to
subfences.

For a subordered set S of a fence F = (F ;≤), let α(S) := (α(S);≤S) where
≤S=≤ ∩S2.

As we mentioned in Section 1, the semigroup OT (F) of order-preserving
self-mappings of a fence need not be coregular. The following theorem shows
a characterization of fences F having a coregular semigroup OT (F).

Theorem 2.1. Let F be a finite fence. Then OT (F) is a coregular semigroup

if and only if |F | ≤ 2.
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Proof. Let OT (F) be a coregular semigroup. Suppose that |F | > 2. Then there
are distinct elements a, b and c ∈ F with a > b < c or a < b > c. We may
assume that a < b > c. Then b and a, c are maximal and minimal, respectively,
Define the extension α : F → F of the mapping given in Figure 1 by

α(x) =

{

a, x is minimal and x 6= a,

b, otherwise.

Then α is order-preserving and not coregualr, a contradiction. Therefore,

|F | ≤ 2.

Conversely, assume that |F | < 2. If |F | = 1, then OT (F) is the set of
a constant mapping. Hence, OT (F) is a coregular semigroup. Assume that
|F | = 2 and F = {a, b} with a < b. Let α ∈ OT (F). Then | ranα| = 1 or
| ranα| = 2. If | ranα| = 1, then α is a constant mapping and hence, α is
coregular. Let | ranα| = 2. Then OT (F) is the set of the identity mapping idF
and two constant mappings. Therefore OT (F) is coregular. �

For a fence F, we denote by COT (F) the set of all coregular order-preserving
self-mappings of F. The following proposition gives useful properties of coreg-
ular elements α ∈ OT (F) that are used later.

Proposition 2.2. Let α ∈ COT (F). Then the following conditions hold:

(i) If a ∈ ranα with α(a) = b, then α(b) = a.

(ii) α|ranα is injective and α2|ranα = idranα.

(iii) If a, b ∈ ranα with a < b, then α(a) < α(b).
(iv) If a ∈ ranα with α(a) = b and a is minimal (maximal) in F, then b is

also minimal (maximal) in F.

Proof. (i) Let a ∈ ranα with α(a) = b. Suppose that α(b) 6= a. Then a 6= b

since otherwise, α(b) = a. From a ∈ ranα, there is an x ∈ F with x 6= a and
α(x) = a. It follows that

α3(x) = α(α(α(x))) = α(α(a)) = α(b) 6= a = α(x).

Hence, α is not coregular which is a contradiction.
(ii) Let a, b ∈ ranα with α(a) = α(b). Then there are x, y ∈ F with

a = α(x) and b = α(y). So, α(α(x)) = α(α(y)) implies that α3(x) = α3(y). By
coregularity of α, we have a = α(x) = α(y) = b.

(iii) Let a, b ∈ ranα with a < b. From α is order-preserving and a < b, we
have α(a) ≤ α(b). Since α|ranα is injective and a 6= b, so α(a) 6= α(b) implies
that α(a) < α(b).

(iv) Let a ∈ ranα with α(a) = b. If | ranα| = 1, then a = b and hence (iv) is
satisfied. Let | ranα| > 1. Suppose that a and b are minimal and maximal in
F, respectively. Then from ranα is a subfence of F, there is a c ∈ ranα with
a < c. By (iii), we have b = α(a) < α(c). Thus b is not maximal which is a
contradiction. �
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As we known, the range of a coregular order-preserving self-mapping of a
fence F is always a subfence of F. It is natural to ask whether a subfence of
F can be the range of such a mapping. A subfence S of a fence F is an order

retract if there is an order-preserving mapping α : F → S such that α|S = idS .
Such a mapping α is called a retraction of F onto S. It is clear that α2 = α

and hence α3 = α. So, a retraction is always coregular.

Example 2.3. Consider a subfence S of a fence F = (F ;≤) where S =
{a1, a2, . . . , an}. Define α : F → F by

α(x) =











a1, d(a, x) < d(a, a1)

x, x ∈ S

an, d(a, x) > d(a, an),

where a is the initial point of F. Clearly, α is order-preserving and α|S = idS .
Hence, α is a retraction and therefore, α is coregular.

Example 2.3 gives us the following proposition.

Proposition 2.4. Every subfence is the rage of a retraction and therefore of

a coregular mapping.

Consider a subfence S of a fence F for which |S| is odd, it can be the range
of a coregular mapping which is not a retraction as shown in the following
proposition.

Proposition 2.5. Let n be an odd number with n > 1 and let S be a subfence

of a fence F with |S| = n. Then there exists an α ∈ COT (F) with ranα = S

and α|S 6= idS.

Proof. Since S is an odd sized fence, there is a non-identity automorphism
σ : S → S of order 2. Let α be a retraction of F onto S. Then the composition
σα is a non-identity order-preserving mapping from F onto S. Since α|S = idS ,
so ασα = σα. If follows that

(σα)3 = σασ(ασα) = σασσα = σα(idS)α = σαα = σα.

So, σα is coregular. �

3. Characterizations of coregular elements in OT (F)

In this section, our aim is to describe coregular elements in OT (F). We start
by proving a lemma.

Lemma 3.1. Let S be a subfence of a finite fence F and let α be a bijection

with ranα = S. Assume that S = {a1, a2, . . . , an} and α(ak) = al. Let w ∈ N

with w ≥ 2. Then the following conditions hold:

(i) Assume that α(ak−1) = al+1. If ak±w ∈ S, then α(ak±w) = al∓w.

(ii) Assume that α(ak−1) = al−1. If ak±w ∈ S, then α(ak±w) = al±w.
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Proof. (i) Assume that α(ak−1) = al+1. If ak−1 < ak > ak+1, then by
Proposition 2.2(iii), α(ak−1) < α(ak) > α(ak+1). From α(ak) = al, we have
α(ak+1) = al−1. Similarly, α(ak+1) = al−1 if ak−1 > ak < ak+1.

Let w ∈ N with w ≥ 2 and ak−w ∈ S. We show that α(ak−w) = al+w by
Strong Induction. If w = 2, then either ak−2 < ak−1 > ak or ak−2 > ak−1 < ak.
If ak−2 < ak−1 > ak, then α(ak−2) < α(ak−1) > α(ak) and from α(ak−1) =
al+1 and α(ak) = al, we have α(ak−2) = al+2. Assume that for each m ∈ N

with 2 ≤ m < w, if ak−m ∈ S, then α(ak−m) = al+m. From w ≥ 2, we have
w−1, w−2 ≥ 0. Since ak−w ∈ S, so 1 ≤ k−w ≤ n implies that 1 < k−(w−1),
k−(w−2) ≤ n. Thus ak−(w−1), ak−(w−2) ∈ S. By the assumptions, α(ak−(w−1))
= al+(w−1) and α(ak−(w−2)) = al+(w−2). Since either ak−(w−2) > ak−(w−1) <

ak−w or ak−(w−2) < ak−(w−1) > ak−w, either α(ak−(w−2)) > α(ak−(w−1)) <

α(ak−w) or α(ak−(w−2)) < α(ak−(w−1)) > α(ak−w) by Proposition 2.2(iii). It
follows that α(ak−w) = al+w. From α(ak−1) = al+1 and α(ak) = al, we have
α(ak+1) = al−1. Using the similar method as above, we can prove that if
ak+w ∈ S, then α(ak+w) = al−w.

(ii) The proof is similar to that of (i). �

We now prove a technical theorem which will be the main tool for describing
coregular α in OT (F).

Theorem 3.2. Let S be a subfence of a finite fence F and let α ∈ COT (F)
with ranα = S and α|S 6= idS. If x ∈ S with α(x) = y, then d(a, x) = d(y, b)
where a and b are the initial point and the endpoint of S, respectively.

Proof. Let S = {a1, . . . , an} with a = a1 < a2 > a3 < · · · > (<)an = b and let
α(ak) = al. Suppose that d(a1, ak) < d(al, an). Then 0 ≤ k− 1 < n− l implies
that l ≤ n− 1.

First we consider k 6= l. Then d(ak, al) 6= 0. Let k < l. From 1 ≤ k < l,
we have l ≥ 2. Thus 2 ≤ l ≤ n − 1 implies that 1 ≤ l − 1, l + 1 ≤ n.
Consequently, al−1, al+1 ∈ S. If ak = a1, then ak−1 6∈ S and ak+1 ∈ S.
Because of either al−1 < al > al+1 or al−1 > al < al+1 and α ∈ COT (F), we
have α(al−1) = ak+1 = α(al+1) since α(al) = ak. Thus α|S is not injective,
a contradiction. Therefore, k > 1 and so, ak−1, ak+1 ∈ S. It follows that
α(al−1), α(al+1) ∈ {ak−1, ak+1}.

We consider α(al+1) in the following 2 cases.
Case 1: α(al+1) = ak−1. Then α(ak−1) = al+1 by Proposition 2.2(i). Since

ak−(k−1) = a1 ∈ S and ak−(k−2) = a2 ∈ S, so α(a1) = α(ak−(k−1)) = al+(k−1)

and α(a2) = α(ak−(k−2)) = al+(k−2) by Lemma 3.1(i). Again by Proposi-
tion 2.2(i), α(al+(k−1)) = a1 and α(al+(k−2)) = a2. From 1 ≤ k − 1 < n − l,
we have 1 ≤ l + k ≤ n. Thus al+k ∈ S. Since a1 is minimal, al+(k−1)

is minimal by Proposition 2.2(iv). Because al+(k−1) and al+k are compa-
rable, al+(k−1) < al+k. It follows that a1 = α(al+(k−1)) < α(al+k). Be-
cause there is only one element in S that is comparable to a1, namely, a2, so
α(al+k) = a2 = α(al+(k−2)), a contradiction.
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Case 2: α(al+1) = ak+1. Then α(al−1) = ak−1. Now we consider d(al, an)
in the following 2 cases.

Case 2.1: d(ak, al) ≤ d(al, an). Then 1 < l − k ≤ n − l implies that
1 < l + (l − k) ≤ n. Thus al+(l−k) ∈ S. By Lemma 3.1(ii), α(al+(l−k)) =
ak+(l−k) = al. But α(ak) = al, so α|S is not injective since al+(l−k) 6= ak, a
contradiction.

Case 2.2: d(ak, al) > d(al, an). Then from d(al, an) > d(a1, ak), we have
d(ak, al) > d(a1, ak) implying l − k > k − 1 ≥ 1. Hence, k ≤ l − (k − 1) < l.
It follows that there is an m ∈ {1, 2, . . . , (l− k)− 1} with l− (k − 1) = k +m.
Thus ak+m ∈ S. From al+m = α(ak+m) = α(al−(k−1)) = ak−(k−1) = a1, we
have l +m = 1, a contradiction since l +m > 1.

Next we assume that k = l and consider k in the following 3 cases.
Case 1: k = 1. Then ak−1 6∈ S and ak+1 ∈ S. From ak = a1 < a2 = ak+1,

we have a1 = al = α(ak) = α(a1) < α(a2) = α(ak+1) implying α(ak+1) =
a2 = al+1. By Lemma 3.1(ii), α(a1+w) = α(ak+w) = al+w = a1+w for all
w ∈ {1, 2, . . . , n− 1}. Hence, α|S = idS , a contradiction.

Case 2: k = n. The proof is dually the same as Case 1.
Case 3: 2 ≤ k ≤ n− 1. Then 1 ≤ k− 1, k+1 ≤ n and 0 ≤ k− 2 < n implies

that ak−1, ak+1 ∈ S. Since α(ak) = ak, so α(ak−1), α(ak+1) ∈ {ak−1, ak+1}.
Case 3.1: α(ak−1) = ak+1. Then α(ak+1) = ak−1. Since k− 1 = d(a1, ak) <

d(al, an) = n − l = n − k, so 1 ≤ k + (k − 2) < k + (k − 1) < n implies that
1 ≤ k + k ≤ n. Thus ak+(k−2), ak+(k−1), ak+k ∈ S. By Lemma 3.1(i) and the
assumptions, α(ak+(k−2)) = ak−(k−2) = a2 and α(ak+(k−1)) = ak−(k−1) = a1.
Because a1 is minimal, ak+(k−1) is minimal. Hence, ak+(k−1) < ak−k implies
that α(ak+(k−1)) < α(ak+k). But α(ak+(k−1)) = a1, so α(ak+k) = a2 implies
that α(ak+(k−2)) = α(ak+k). Because of ak+(k−2) 6= ak+k, we get that α|S is
not injective, a contradiction.

Case 3.2: α(ak−1) = ak−1. Then α(ak+1) = ak+1. It follows that for
each u ∈ {1, 2, . . . , n − k} and w ∈ {1, 2, . . . , k − 1} , α(ak+u) = ak+u and
α(ak−w) = ak−w by Lemma 3.1(ii) and the assumptions. Hence, α|S = idS , a
contradiction.

Altogether, we can prove that d(a1, ak) = d(al, an). �

Proposition 3.3. Let S be a subfence of a finite fence F and let α ∈ COT (F)
with ranα = S. Then α|S = idS if and only if α(a) = a where a is the initial

point of S.

Proof. It is clear that α(a) = a if α|S = idS . Conversely, we assume that
α(a) = a. If α is constant, then S = ranα = {a} implies that α|S = idS .
Now assume that α is non-constant. Let b be the endpoint of S. Then by
Theorem 3.2, d(a, a) = d(a, b) which is a contradiction since d(a, a) = 0 and
d(a, b) 6= 0. �

Note that d(x, y) is even if x, y are minimal (maximal) in a fence F and
d(x, y) is odd if x is minimal (maximal) and y is maximal (minimal) in F.
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In what follows, we restrict our study to the case of a mapping α in OT (F)
for which the cardinal number of ranα is even. Theorem 3.4 shows that it has
only one possibility for such a mapping to be coregular. Namely, the restriction
to its range has to be an identity mapping.

Theorem 3.4. Let S be a subfence of a finite fence F for which |S| is even and

let α ∈ OT (F) with ranα = S. Then α is coregular if and only if α|S = idS.

Proof. Clearly, α is coregular if α|S = idS . Conversely, we assume that α is
coregular and S is an up-fence. Let a, b be the initial point and the endpoint
of S, respectively. Then from |S| is even, a is minimal and b is maximal.

Suppose that α(a) 6= a. Then α|S 6= idS and there is an element x ∈ S \ {a}
with α(a) = x. By Theorem 3.2, 0 = d(a, a) = d(x, b). Because a is minimal, x
is minimal. It follows that d(x, b) is odd since b is maximal and hence d(x, b) 6=
0, a contradiction. Therefore, α(a) = a and by Proposition 3.3, α|S = idS . �

To finish this section, it remains to describe coregular mappings α in OT (F)
for which the cardinal numbers of their ranges are odd.

Theorem 3.5. Let S be a subfence of a finite fence F for which |S| is odd and

let α ∈ OT (F) with ranα = S. Assume that S = {a1, a2, . . . , an}. Then α is

coregular if and only if one of the following conditions satisfies:

(i) α|S = idS,

(ii) α(ak) = an−(k−1) for all k ∈ {1, 2, . . . , n}.

Proof. Assume that α is coregular and α|S 6= idS . Let ak ∈ ranα with α(ak) =
al. Then by Theorem 3.1, d(a1, ak) = d(al, an) implies that k − 1 = n− l and
hence, l = n− (k − 1).

Conversely, assume that one of the conditions is satisfied. Let x ∈ F . Then
there is an ak ∈ S with α(x) = ak. If α|S = idS , then

α3(x) = α(α(α(x))) = α(α(ak)) = α(ak) = ak = α(x).

Let α|S 6= idS . Then Theorem 3.5 implies that

α3(x) = α(α(α(x))) = α(α(ak)) = α(an−(k−1)) = an−[n−(k−1)−1] = ak = α(x).

Altogether, we can prove that α is coregular. �

4. Coregular subsemigroup of OT (F )

As we proved in Theorem 2.1, OT (F) is not coregular if |F | > 2. In this
section, our goal is to find coregular subsemigroups of OT (F), that is, subsemi-
groups of OT (F) that all elements are coregular. Because COT (F) is the set
of all coregular elements in OT (F). It is natural to ask whether it is a subsemi-
group of OT (F). To answer this question, we need the following propositions.

Lemma 4.1. Let S and T be subfences of a finite fence F with S ⊆ T and let

α, β ∈ COT (F) with ranα = S and ranβ = T . The following conditions hold:

(i) ran(αβ) = S.
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(ii) If β|T = idT , then αβ is coregular.

Proof. (i) Because of T ⊆ F and ranα = S, we have α(T ) ⊆ S. But T = ranβ,
we have ran(αβ) = αβ(F ) = α(T ) ⊆ S.

Conversely, let y ∈ S. Then from α is coregular, α|S : S → S is injective
and from S is finite, α|S : S → S is bijective. So, there is an x ∈ S with
α(x) = y. But S ⊆ T , so y ∈ α(T ) = ran(αβ). Hence, S ⊆ ran(αβ) and
therefore, ran(αβ) = S.

(ii) We show that (αβ)|S = α|S . Let a ∈ S ⊆ T . Then from β|S is an
identity mapping, (αβ)(a) = α(β(a)) = α(a). Therefore, αβ is coregular by
Theorem 3.4 and Theorem 3.5. �

Proposition 4.2. Let S,T be subfences of a finite fence F with |S| ≥ 2 and

S ⊂ T and let α, β ∈ COT (F) with ranα = S and ranβ = T . Assume that

T = {a1, . . . , an} and S = {ak, . . . , al} with d(a1, ak) 6= d(al, an). If β|T 6= idT
and α|S = idS with α(x) 6= β(x) for all x ∈ T \ S, then αβ 6∈ COT (F).

Proof. By Lemma 4.1(i), ran(αβ) = S. First we show that there is a t ∈
{k, k + 1, . . . , l} with an−(t−1) 6∈ S. Suppose that an−(t−1) ∈ S for all t ∈ {k,
k + 1, . . . , l}. Then an−(k−1), an−(l−1) ∈ S implies that k ≤ n − (k − 1),
n− (l−1) ≤ l. Next we show that l = n− (k−1). Suppose that l 6= n− (k−1).
Then n − (k − 1) < l implies that n − (l − 1) < k, a contradiction. So,
l = n−(k−1) implies that d(a1, ak) = k−1 = n−l = d(al, an) which contradict
to the assumption. Therefore, an−(t−1) 6∈ S for some t ∈ {k, k + 1, . . . , l}.

Consider αβ(at). From an−(t−1) 6∈ S = ran(αβ), we have an−(t−1) 6=
αβ(at) = α(an−(t−1)) 6= β(an−(t−1)) = at. Theorem 3.4 and Theorem 3.5
imply that αβ is not coregular. �

Proposition 4.2 tells that the composition of coregular order-preserving self-
mappings of a fence need not be coregular. It follows that COT (F) need not
be a subsemigroup of OT (F).

Let S be a subfence of a fence F. We denote by COTS(F) the set of all
α ∈ COT (F) having S as their ranges.

Theorem 4.3. Let S be a subfence of a finite fence F. Then COTS(F) is a

coregular subsemigroup of OT (F).

Proof. Let α and β ∈ OT (F). It is known that αβ ∈ OT (F). By Lemma 4.1(i),
ran(αβ) = S. We consider S in the following cases.

Case 1: |S| is even. By Theorem 3.3, α|S = idS = β|S implies that (αβ)|S =
idS . Hence, αβ is coregular.

Case 2: |S| is odd. Let S = {a1, . . . , an}. If β|S is an identity mapping,
then from Lemma 4.1(ii), αβ is coregular.

Next, assume that β|S is not an identity mapping. Then by Theorem 4.4,
β(ak) = an−(k−1) for all ak ∈ {a1, . . . , an}. We consider again α in the following
2 cases.
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Case 2.1: α|S is an identity mapping. Then

(αβ)(ak) = α(β(ak)) = α(an−(k−1)) = an−(k−1)

for all ak ∈ {a1, . . . , an}. Hence, αβ is coregular.
Case 2.2: α|S is not an identity mapping. Then α(ak) = an−(k−1) for all

ak ∈ {a1, . . . , an}. It follows that (αβ)(ak) = α(β(ak)) = α(an−(k−1)) =
an−[n−(k−1)−1] = ak for all ak ∈ {a1, . . . , an}, that is, (αβ)|S = idS . Hence,
αβ is coregular.

Altogether, we can prove that αβ ∈ COTS(F) and therefore COTS(F) is
a subsemigroup of OT (F). Because every elements in COTS(F) is coregular,
COTS(F) is a coregular subsemigroup of OT (F). �

Next we are looking for other coregular subsemigroups of OT (F). Before
doing so, we need the following proposition that gives a sufficient condition for
the composition of coregualr elements in OT (F) to be coregular.

Proposition 4.4. Let S,T be subfences of a finite fence F and S ⊆ T . Assume

that T = {a1, . . . , an} and S = {ak, . . . , al}. Let α, β ∈ COT (F) with ranα = S

and ranβ = T . If d(a1, ak) = d(al, an), then αβ and βα are coregular such

that ranαβ = S = ranβα.

Proof. We consider |T | in the following 2 cases. First, we assume that |T | is
odd. From d(a1, ak) = d(al, an), we have |S| is odd implying that

β|T is an identity mapping or β(am) = an−(m−1) for all m ∈ {1, 2, . . . , n} and

α|S is an identity mapping or α(am) = al−(m−k) for all m ∈ {k, k + 1, . . . , l}.

By Lemma 4.1(i), ran(αβ) = S. We consider β in the following 2 cases.
Case 1: β|T is an identity mapping. By Lemma 4.1(ii), αβ is coregular.

Next we show that βα is coregular. From β(F ) = T and α(F ) = S, we have
βα(F ) = β(S). Since S ⊆ T and β|T is an identity mapping, β(S) = S implies
that ran(βα) = S. If α|S is an identity mapping, then (βα)|S is an identity
mapping. Hence, βα is coregular. Assume that α|S is not an identity mapping.
Let ai ∈ S. Then ai ∈ T = ranβ and

(βα)(ai) = β(α(ai)) = β(al−(i−k)) = al−(i−k).

By Theorem 3.5, βα is coregular.
Case 2: β|T is not an identity mapping. From d(a1, ak) = d(al, an), we have

n− (i− 1) = n− d(a1, ai) = n− [d(a1, ak) + d(ak, ai)]

= n− d(a1, ak)− d(ak, ai) = [n− d(a1, ak)]− d(ak, ai)

= [n− d(al, an)]− d(ak, ai) = [n− (n− l)]− (i − k)

= l − (i− k)

for all i ∈ {k, k + 1, . . . , l}. Since β|T is not an identity mapping, β(ai) =
an−(i−1) = al−(i−k) ∈ S for all ai ∈ {ak, . . . , al} = S implies that β(S) ⊆ S.
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But β|T is injective and S ⊆ T , so β(S) = S and hence, ran(βα) = βα(F ) =
β(S) = S.

We consider α in the following 2 cases.
Case 2.1: α|S is an identity mapping. Let ai ∈ S. Then k ≤ i ≤ l and

(αβ)(ai) = α(β(ai)) = α(an−(i−1)) = α(al−(i−k)) = al−(i−k) and (βα)(ai) =
β(α(ai)) = β(ai) = an−(i−1) = al−(i−k). Theorem 3.5 implies that αβ and βα

are coregular.
Case 2.2: α|S is not an identity mapping. Let ai ∈ S. Then we have

(αβ)(ai) = α(β(ai))

= α(an−(i−1))

= α(al−(i−k))

= al−[l−(i−k)−k]

= al−[l−(i−k)]+k

= al−l+(i−k)+k

= ai

and (βα)(ai) = β(al−(i−k)) = β(an−(i−1)) = an−[n−(i−1)−1] = ai. Hence,
(αβ)|S = idS = (βα)|S and therefore, αβ and βα are coregular.

Next we assume that |T | is even. From S ⊆ T and d(a1, ak) = d(al, an),
we get that |S| is even. By Theorem 3.4, α|S and β|T are identity mappings.
Similarly as Case 1, we can prove that αβ and βα are coregular. �

As a consequent of Proposition 4.4, we obtain a new coregular subsemigroup
of OT (F) which contains some COTS(F).

Theorem 4.5. Let a and b be the initial point and the endpoint of a finite fence

F, respectively. Assume that Sub = {S ⊆ F | d(a, x) = d(y, b)} where x and y

are the initial point and the endpoint of S, respectively. Then
⋃

S∈Sub

COTS(F)

is a coregular subsemigroup of OT (F).

Proof. Let α, β ∈
⋃

S∈Sub

COTS(F). Then there are S, T ∈ Sub with ranα = S

and ranβ = T , respectively. Assume that x, x′ and y, y′ are initial points and
endpoints of S and T , respectively. We may assume that d(a, x) ≥ d(a, x′).
Then from S, T ∈ Sub, we have d(y, b) = d(a, x) > d(a, x′) = d(y′, b). It follows
that S ⊆ T and d(a, x)− d(a, x′) = d(y, b)− d(y′, b). Since d(a, x)− d(a, x′) =
d(x′, x) and d(y, b) − d(y′, b) = d(y, y′), so d(x′, x) = d(y, y′). Proposition 4.4
implies that αβ, βα ∈ COTS(F) ⊆

⋃

S∈Sub

COTS(F). Hence,
⋃

S∈Sub

COTS(F) is

a subsemigroup of OT (F). Therefore
⋃

S∈Sub

COTS(F) is a coregular subsemi-

group since every element in
⋃

S∈Sub

COTS(F) is coregular. �
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It seem to be that
⋃

S∈Sub

COTS(F) is a maximal coregular subsemigroup of

OT (F). Unfortunately, it may not be the case since there are elements α ∈
⋃

S∈Sub

COTS(F) and β ∈ COT (F) \
⋃

S∈Sub

COTS(F) for which αβ is coregular

as shown in Proposition 4.6.

Proposition 4.6. Let S,T be subfences of a finite fence F = (F ;≤) with

|S| ≥ 2 and S ⊂ T and let α, β ∈ COT (F) with ranα = S and ranβ = T .

Assume that T = {a1, . . . , an} and S = {ak, . . . , al} with d(a1, ak) 6= d(al, an).
Let β|T 6= idT and α|S = idS with α(x) = β(x) for all x ∈ T \S. If an−(u−1) 6∈ S

or au = an−(u−1) for all u ∈ {k, . . . , l}, then αβ ∈ COT (F).

Proof. By Lemma 4.1(i), ran(αβ) = S. Let au ∈ {ak, . . . , al} = S. If
an−(u−1) 6∈ S, then αβ(au) = α(an−(u−1)) = β(an−(u−1)) = au. If au =
an−(u−1), then αβ(au) = α(an−(u−1)) = α(au) = au. Hence, (αβ)|S = idS and
therefore, αβ is coregular. �
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