DOI QR코드

DOI QR Code

3차원 벡터필드 탄젠트 곡선 계산을 위한 사면체 분해 방법

A Tetrahedral Decomposition Method for Computing Tangent Curves of 3D Vector Fields

  • Jung, Il-Hong (Department of Computer Engineering, Daejeon University)
  • 투고 : 2015.01.01
  • 심사 : 2015.02.28
  • 발행 : 2015.09.30

초록

본 논문에서는 3차원 벡터필드의 탄젠트 곡선을 계산하는 효율적이고 정확한 방법을 제안한다. 탄젠트 곡선 상의 정확한 값을 구하지 못하고 단지 탄젠트 곡선의 근사치를 구하는 Runge-Kutta 같은 기존의 방법과는 달리 여기서 제안한 방법은 3D 사면체 도메인에서 벡터필드가 선형적으로 변한다는 가정하에 탄젠트 곡선 상의 정확한 값을 계산한다. 새로 제안한 방법은 벡터필드가 3D 사면체 도메인에서 선형적으로 변한다고 가정한다. 우선 이 방법은 3차원 벡터필드에서 육면체 셀을 5 또는 6개의 사면체 셀로 분해하는 것을 요구한다. 임계점은 각 사면체의 간단한 선형 시스템을 풀어서 간단하게 구할 수 있다. 이 방법은 이전 사면체에서 계산된 탄젠트 곡선상의 점들을 기초로 다음 사면체에서 탄젠트 곡선상의 계속적인 점들을 생성함으로써 출구 점을 구한다. 탄젠트 곡선상의 점들은 각 사면체의 명시해에 의해서 계산되었기 때문에 새로운 방법은 3D 벡터필드를 가시화하는데 정확한 위상을 마련한다.

This paper presents the development of certain highly efficient and accurate method for computing tangent curves for three-dimensional vector fields. Unlike conventional methods, such as Runge-Kutta method, for computing tangent curves which produce only approximations, the method developed herein produces exact values on the tangent curves based upon piecewise linear variation over a tetrahedral domain in 3D. This new method assumes that the vector field is piecewise linearly defined over a tetrahedron in 3D domain. It is also required to decompose the hexahedral cell into five or six tetrahedral cells for three-dimensional vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. This method is to find exit points by producing a sequence of points on the curve with the computation of each subsequent point based on the previous. Because points on the tangent curves are calculated by the explicit solution for each tetrahedron, this new method provides correct topology in visualizing 3D vector fields.

키워드

참고문헌

  1. I. -H. Jung, "An Efficient Visualization Method of Two-Dimensional Vector Fields", Journal of Korea Multimedia Society, Vol.12, No.11, pp.1623-1628, No v. 2009.
  2. A. Globus, C. Levit, and T. Lasinski, "A tool for Visualizing the Topology of Three-dimensional Vector Fields," Proc. Visualization '91, IEEE Computer Society, pp.33-40, 1991.
  3. J. L. Helman and L. Hesselink, "Representation and Display of Vector Field Topology in Fluid Data Sets, " IEEE Computer, Vol.22, No.8, pp.27-36, Aug. 1989.
  4. J. L. Helman and L. Hesselink, "Surface Presentation of Two-and Three-Dimensional Fluid Flow Topology," Proc. Visualization '90, IEEE Computer Society, pp.6-13, 1990.
  5. J. L. Helman and L. Hesselink, "Visualizing Vector Field Topology in Fluid Flows," IEEE Computer Graphics and Applications, Vol.11, pp.36-46, May 1991. https://doi.org/10.1109/38.79452
  6. J. C. Kim, K. O. Kim, E. K. Kim and C. Y. Kim, "3D Visualization System for Realtime Environmental Data", Journal of Digital Contents Society, Vol.9, No.4, pp.707-715, Dec. 2008.
  7. V. I. Arnold, "Ordinary Differential Equations", MIT Press, 1973.
  8. S. Birkhoff and G. Rota, "Ordinary Differential Equations", fourth edition, Wiley, NewYork, 1989.
  9. D. Kenwright and D. Lane, "Optimization of Time-Dependent Particle Tracing using Tetrahedral Decomposition," Proc. Visualization '95, IEEE Computer Society, pp.321-328, 1995.
  10. G. M. Nielson, "Visualization in Scientific and Engineering Computation," IEEE Computer, Vol.24, No.9, pp.58-66, 1991.
  11. G.M. Nielson, I. -J. Jung, N. Srinivasan, J, Sung and J. -B. Yoon, "Tools for Computing Tangent Curves and Topological Graphs for Visualizing Piecewise Linearly Varying Vector Fields over Triangulated Domains," in: Scientific Visualization: Overview, Methodologies and Techniques, G. Nielson, H. Hage n and H. Muller, editors, IEEE Computer Society Press, Los Alamitos, CA, pp.527-562, 1997.
  12. G. M. Nielson and A. Kaufman, "Visualization Graduates," IEEE Computer Graphics and Applications, Vol.14, No. 5, pp.17-18, Sep. 1994.
  13. S. -K. Ueng, C. Sikorski, and K.-L Ma, "Efficient Streamline, Stremribbon, and Streamtube Constructions on Unstructured Grids," IEEE Transactions of Visualization and Computer Graphics, Vol.2, No.2, pp.100-108, Jun. 1996. https://doi.org/10.1109/2945.506222

피인용 문헌

  1. The Phase Space Analysis of 3D Vector Fields vol.16, pp.6, 2015, https://doi.org/10.9728/dcs.2015.16.6.909