References
- C. Gottlieb, V. Arzhanov, W. Gudowski, N. Garis, Feasibility study on transient identification in nuclear power plants using support vector machines, Nucl. Technol. 155 (2006) 67-77. https://doi.org/10.13182/NT06-A3746
- E. Zio, G. Gola, Neuro-fuzzy pattern classification for fault diagnosis in nuclear components, Ann. Nucl. Energy 33 (2006) 415-426. https://doi.org/10.1016/j.anucene.2005.12.008
- R. Razavi-Far, H. Davilu, V. Palade, C. Lucas, Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks, Neurocomputing 72 (2009) 2939-2951. https://doi.org/10.1016/j.neucom.2009.04.004
- J. Ma, J. Jiang, Applications of fault detection and diagnosis methods in nuclear power plants: a review, Prog. Nucl. Energy 53 (2011) 255-266. https://doi.org/10.1016/j.pnucene.2010.12.001
- J. Liu, R. Seraoui, V. Vitelli, E. Zio, Nuclear power plant components condition monitoring by probabilistic support vector machine, Ann. Nucl. Energy 56 (2011) 23-33.
- K. Moshkbar-Bakhshayesh, M.B. Ghofrani, Transient identification in nuclear power plants: a review, Prog. Nucl. Energy 67 (2013) 23-32. https://doi.org/10.1016/j.pnucene.2013.03.017
- L.H. Chiang, M.E. Kotanchek, A.K. Kordon, Fault diagnosis based on fisher discriminant analysis and support vector machines, Comput. Chem. Eng. 28 (2004) 1389-1401. https://doi.org/10.1016/j.compchemeng.2003.10.002
- A. Widodo, B.S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mech. Syst. Signal Process. 21 (2007) 2560-2574. https://doi.org/10.1016/j.ymssp.2006.12.007
- S.K. Choi, J.Y. Park, I.B. Lee, Process monitoring using a gaussian mixture model via principal component analysis and discriminant analysis, Comput. Chem. Eng. (2004) 1377-1387.
- A. Widodo, B.S. Yang, Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors, Expert Syst. Appl. 33 (2007) 241-250. https://doi.org/10.1016/j.eswa.2006.04.020
- Z. Zhu, Z. Song, A novel fault diagnosis system using pattern classification on kernel fda subspace, Expert Syst. Appl. 38 (2011) 6895-6905. https://doi.org/10.1016/j.eswa.2010.12.034
- P. Baraldi, F. Di Maio, Unsupervised clustering for fault diagnosis in nuclear power plant components, Int. J. Comput. Intell. Syst. 6 (2013) 764-777. https://doi.org/10.1080/18756891.2013.804145
- J.H. Purba, A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment, Ann. Nucl. Energy 70 (2014) 21-29. https://doi.org/10.1016/j.anucene.2014.02.022
- O. Chapelle, B. Scholkopf, A. Zien (Eds.), Semi-supervised Learning, The MIT Press, Cambridge, MA, 2006.
- P. Niyogi, Manifold regularization and semi-supervised learning: some theoretical analyses, J. Mach. Learn. Res. 14 (2013) 1229-1250.
- R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed., Wiley, 2000.
- E. Alpaydin, Introduction to Machine Learning, second ed., The MIT Press, Cambridge, MA, 2010.
- A.R. Webb, K.D. Copsey, Statistical Pattern Recognition, third ed., Wiley, 2011.
- X. Zhu, Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin, Madison, 2005.
- X. Zhu, A.B. Goldberg, Introduction to Semi-supervised Learning, Morgan and Claypool Publishers, San Rafael, 2009.
- M. Seeger, Learning with Labeled and Unlabeled Data, Technical Report No. EPFL-REPORT-161327, University of Edinburgh, Edinburgh, 2000.
- C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- A. Singh, R.D. Nowak, X. Zhu, Unlabeled data: now it helps, now it doesn't, Adv. Neural Inf. Process. Syst. 21 (2008) 1513-1520.
- T. Lu, Fundamental Limitations of Semi-supervised Learning, Master Thesis, University of Waterloo, Ontario, 2009.
- D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Scholkopf, Learning with local and global consistency, Adv. Neural Inf. Process. Syst. 16 (2003) 321-328.
- G. Camps-Valls, T.V. Marsheva, D. Zhou, Semi-supervised graph-based hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 45 (2007) 3044-3054. https://doi.org/10.1109/TGRS.2007.895416
- O. Chapelle, J. Weston, B. Scholkopf, Cluster kernels for semi-supervised learning, Adv. Neural Inf. Process. Syst. 15 (2002) 585-592.
- J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2002) 888-905.
- A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, Adv. Neural Inf. Process. Syst. 14 (2001) 849-856.
- X. Zhu, Semi-supervised Learning with Graphs, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2005.
- F. Li, Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems, Ph.D. Thesis, University of Tennessee, Knoxville, 2011.
- M. Bhushan, R. Rengaswamy, Comprehensive design of a sensor network for chemical plants based on various diagnosability and reliability criteria. 1. Framew. Ind. Eng. Chem. Res. 41 (2002) 1826-1839. https://doi.org/10.1021/ie0104363
Cited by
- A dynamic ordered concept lattice based algorithm for early diagnosis of NPP faults vol.92, pp.None, 2015, https://doi.org/10.1016/j.pnucene.2016.06.001
- Design and development of enhanced criticality alarm system for nuclear applications vol.50, pp.5, 2018, https://doi.org/10.1016/j.net.2018.01.022
- Unsupervised classification of NPPs transients based on online dynamic quantum clustering vol.134, pp.10, 2015, https://doi.org/10.1140/epjp/i2019-12915-4
- A Correlation-Based Feature Selection Algorithm for Operating Data of Nuclear Power Plants vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/9994340
- A Framework for Monitoring and Fault Diagnosis in Nuclear Power Plants Based on Signed Directed Graph Methods vol.9, pp.None, 2015, https://doi.org/10.3389/fenrg.2021.641545
- Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants vol.142, pp.None, 2015, https://doi.org/10.1016/j.pnucene.2021.103990