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APPROXIMATELY QUINTIC MAPPINGS IN
NON-ARCHIMEDEAN 2-NORMED SPACES BY FIXED POINT
THEOREM

CHANG IL KIM AND KAP HUN JUNG*

ABSTRACT. In this paper, using the fixed point method, we investigate
the generalized Hyers-Ulam stability of the system of quintic functional
equation

flz1+z2,9) + f(z1 — 22,9) = 2f(21,9) + 2f(22,9)

f(@,2y1 +y2) + f(z,2y1 — y2) = f(2, 91 — 2y2) + f(z,y1 + y2)

7f(93, Y1 — y2) + 15f(.’l?, yl) + Gf(.’b, yQ)'

in non-Archimedean 2-Banach spaces.
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1. Introduction and preliminaries

In 1940, Ulam [22] posed the following problem concerning the stability of
functional equations:

Let Gy be a group and let Go be a metric group with the metric d(-,-). Given
€ > 0, does there exist a § > 0 such that if a mapping h : G1 — G4 satis-
fies the inequality d(h(xy), h(x)h(y)) < & for all x,y € G1, then there exists a
homomorphism H : G — Go with d(h(x), H(x)) < € for all x € G1 ¢

Hyers [8] solved the Ulam’s problem for the case of approximately additive
functions in Banach spaces. Since then, the stability of several functional equa-
tions has been extensively investigated by several mathematicians [3, 5, 9, 10,
11, 14, 17]. The Hyers-Ulam stability for the quadratic functional equation

flx+y)+ flz—y) =2f(x) +2f(y)

was proved by Skof [21] for a function f : EFy — FEs, where E; is a normed
space and Es is a Banach space and later by Jung [13] on unbounded domains.
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Rassias [20] investigated the stability for the following cubic functional equa-
tion

fQRx+y) = 3f(r+y)+3f(x) — flz —y) =6f(y)

and Jun and Kim [12] investigated the stability for the following cubic funtional
equation

Rz +y)+ fQ2r —y) =2f(x +y) + 2f(z —y) + 12f(2). (1)

A waluation is a function | - | from a field K into [0,00) such that for any
r,s € K, the following conditions hold: (i) |r| = 0 if and only if r = 0, (ii)
[rs| = |r||s|, and (iil) |r 4+ s| < |r| 4+ |s|. A field K is called a valued field if
K carries a valuation. The usual absolute values of R and C are examples of
valuations. If the triangle inequality is replaced by |r + s| < maz{|r|,|s|} for all
r,s € K, then the valuation | - | is called a non-Archimedean valuation and the
field with a non-Archimedean valuation is called a non-Archimedean field. If | - |
is a non-Archimedean valuation on K, then clearly, |1] = | — 1| and |n| < 1 for
all n € N.

Definition 1.1. Let X be a vector space over a non-Archimedean field K. A
function || - || : X — R is called a non-Archimedean norm if it satisfies the
following conditions:

(a) ||z|| = 0 if and only if 2 = 0,

(b) Irz]l = |r|]l2]}, and
(©) ||z + y|| < maz{||z||, ly||} for all z,y € X and all r € K.
If || - || is a non-Archimedean norm, then (X, | - ||) is called a non-Archimedean
normed space.
Let (X, - ||) be a non-Archimedean normed space and {z,} a sequence in
X. Then {x,} is said to be convergent in (X, || - ||) if there exists an x € X such
that lim, e ||z, — || = 0. In case, x is called the limit of the sequence {x,},

and one denotes it by lim, . z, = . A sequence {z,} is said to be Cauchy
in (X, ) if limy,— o0 || Zntp — Tnl| = 0 for all p € N. By (c) in Definition 1.1,

|20 — Tonll < maz{lej — ;| |m<j<n—1} (n>m),

a sequence {z,} is Cauchy in (X, || - ||) if and only if {x,+1 — z,} converges to
zero in (X, || - ||). By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent.

Gdhler [6, 7] has introduced the concept of 2-normed spaces and White [23]
introduced the concept of 2-Banach spaces. In 1999 to 2003, Lewandowska
published a series of papers on 2-normed sets and generalized 2-normed spaces
[15, 16].

Definition 1.2. Let X be a linear space over a non-Archimedean field K with
dim X > 1and |-, ]| : X x X — R a function satisfying the following properties
(NA1) ||z,y]| = 0if and only if  and y are linearly dependent,
(NA2) [z, yll = [ly, [,
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(NA3) ||z, ay = [alllz, y]| , and
(NA4) |lz,y + 2]l < maz{|z,yl|, |z, 2]}

forall z,y,z € X and all a € K. Then ||-,-|| is called a non-Archimedean 2-norm
and (X, ||-,-]]) is called a non-Archimedean 2-normed spaces.
Definition 1.3. A sequence {z,} in a non-Archimedean 2-normed space (X, ||-,-||)
is called a Cauchy sequence if

lim ||, — @m, z|| =0

n,m—00
for all x € X.
Definition 1.4. A sequence {z,} in a non-Archimedean 2-normed space (X, ||-,-||)
is called convergent if
lim ||z, — 2,y =0
n—oo

for all y € X and for some x € X. In case, x is called the limit of the sequence
{z,}, and we denoted by z, — z asn — oo or lim, . x, = 2.

Let {z,} be a sequence in a non-Archimedean 2-normed space (X, ||-,-||). It
follows from (NA4) that

[@m = zn,yll <maz{llz;sr —zjyl [n<j<m—1}  (n<m),

for all y € X and so a sequence {z,} is a Cauchy sequence in (X, ||-,-||) if and
only if {@y,11 — zm} converges to zero in (X, [|-,-]|)-

A non-Archimedean 2-normed space (X, ||-,-||) is called a non-Archimedean
2-Banach space if every Cauchy sequence in (X, ||-,-||) is convergent. Now, we
state the following results as lemma [18].

Lemma 1.5. Let (X, ||-,-||) be a non-Archimedean 2-normed space. Then we
have the following :

() [llz, 2l = ly, 21| < e — g 2]l for all 25,7 € X,

(2) ||z, 2z|]| =0 for all z € X if and only if x =0, and

(3) for any convergent sequence {z,} in (X, ||-,-|]),
lim [z, 2| = | lim z,, 2|
n— oo n—o0
forall z € X.

In 2003, Radu [19] proposed a new method for obtaining the existence of
exact solutions and error estimations, based on the fixed point alternative (see
also [1, 2]).

We recall the following theorem by Margolis and Diaz.

Theorem 1.6 ([4]). Let (X,d) be a complete generalized metric space and let
J : X — X be a strictly contractive mapping with some Lipschitz constant L
with 0 < L < 1. Then for each given element x € X, either d(J"z, J"z) = oo
for all nonnegative integers n or there exists a positive integer ng such that

(1) d(J"z, J"Flz) < 0o for all n > ng
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(2) the sequence {J™xz} converges to a fized point y* of J
(3) y* is the unique fized point of J in the set Y = {y € X | d(J™zx,y) < oo}

1
(4) d(y,y*) < 7= dly, Jy) forally €Y.

In this paper, we investigate the following cubic functional equation

fRx+y)+ f2r—y) = f(x—2y) + flx+y) — flx—y) +15f(x) +6f(y) (2

and using fixed point method, we inverstigate the generalized Hyers-Ulam sta-
bility for the system of the quintic functional equation

f(xl + xZuy) + f(xl - x27y) = 2f($17y) + Qf(x27y)
f@, 2y + ) + f(2, 2010 —y2) = fm,0 = 202) + f(m 00 +92)  (3)
_f(1'7y1 - y2) + 15f(x,y1) + 6f(x,y2),

and prove the generalized Hyers-Ulam stability for (3) in non-Archimedean 2-

Banach spaces. In this paper, we will assume that (X ||-]|) is a non-Archimedean
normed space and (Y, ]|-,]|) is a non-Archimedean 2-Banach space.

2. Stability of quintic mappings

In this section, using the fixed point method, we investigate the generalized
Hyers-Ulam stability for the system of quintic functional equation (3) in non-
Archimedean 2-Banach spaces. We start the following lemma.

Lemma 2.1. Let f : X — Y be a mapping with (2). Then f is a cubic
mapping.
Proof. Suppose that f satisfies (2). Letting = y = 0 in (2), we have f(0) =0
and letting y = 0 in (2), we have

f(2z) =8f(x) (4)
for all z € X. Letting = 0 in (2), by (4), we have f(y) = —f(—y) forall y € X
and so f is odd. Letting y = —y in (2), we have
fRz—y)+ fQRr+y) - flx+2y) — flz —y) + flx+y) —15f(z) + 6f(y) =0

()

for all x,y € X and by (2) and (5), we have
fle+2y) = f(z = 2y) = 2f(x +y) +2f(x —y) —12f(y) = 0 (6)
for all x,y € X. Interching x and y in (6), since f is odd, f satisfies (1) and
hence f is cubic. O

The function f: R x R — R given by f(z,y) = cx?y? is a solution of (3).
In partcular, letting y =  in (3), we get a quintic function g : R — R in one
variable given by g(z) = f(z,r) = cx®.

Proposition 2.2. If a mapping f : X?> — Y satisfies (3), then f(\x,uy) =
N3 f(x,y) for all x,y € X and all rational numbers X, 1.
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Theorem 2.3. Let ¢1,¢p2 : X3 x Y — [0,00) be functions such that

forall z,y,z € X, w €Y and some L with 0 < L < 1. Suppose that f : X?> —
Y is a mapping such that f(x,0) = f(0,2) =0 for allxz € X,

1 f (@1 + 22, 9) + f(21 — 22, y) — 2f (21, 9) — 2f (22, y), 0| < 1 (21, 72, y,w), (8)

and
1f(z,2y1 + y2) + f(2,2y1 — y2) — f(z, 91 — 292) — fz, 91 + y2)
+f(z, 91 —y2) — 15f (2, y1) — 6f (2, y2), w| < d2(z,y1, Y2, w)

forallw €Y and all x,y,x1,x2,y1,y2 € X. Then there exists a unique quintic
mapping T : X2 — Y satisfying (3) and

(9)

17 9) = T )wl < 1 @y, w) (10)

for allw €Y and all x,y € X, where
O(z,y,w) = maz{ 2|1 (2, 2,y, w), |2 p2(22,y,0,w)}.

Proof. Putting y2 = 0 and y; = y in (9), we get

Hf(xazy) - 23f(x,y),w\| < |2|_1¢2('Tay707w) (11)
for all w € Y and all z,y € X. Putting 1 = x5 = z in (8), we get
1f(22,y) = 2° f(z,y),w|| < ¢1 (2,2, y, w) (12)

for all w € Y and all 2,y € X. Thus by (11) and (12), we have
||f(2$7 2y) - 25f(1‘,y),’UJ||

= || f(2z,2y) — 23][(2‘%’ y) + 23[f(2x7y) - 22f(x,y)],w||

< maz{||f(2z,2y) — 2° f 2z, y), wl, [21°]1f(22,y) — 2°f (2, ), w]}

< maz{[2[*¢1(z, z,y, w), 2| $2(22,y,0,w)}
for all w € Y and all 2,y € X. It follows from (13) that

H2_5f(2x,2y)—f(x,y),w|| < é(xvyaw) (14)

for all w € Y and all z,y € X.

Consider the set S = {h | h: XxX — Ywith h(z,0) = h(0,z) =0, Vz € X}
and the generalized metric d on S defined by

(13)

d(g,h) = inf{e € [0,00) | lg(z,y) — h(z,y),w| < e &(z,y,w), Vw €Y, Va,y € X}.

Then (S,d) is a complete metric space [2]. Define a mapping J : S — S
by Jg(z,y) = 27°%g(2x,2y) for all z,y € X and all g € S. Let g,h € S and
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d(g,h) < e for some non-negative real number . Then by (7), we have
1 g(x,y) — Jh(z,y), wl| = [2|7°|lg(2z, 2y) — h(2z, 2y), w|
< 2| (20, 29, w)
= 12| %e maz{|2|*¢1(2z, 2z, 2y, w), [2| °p2 (47, 2y,0, w)}
<el &(z,y,w),

and so d(Jg, Jh) < eL. This mean that d(Jg, Jh) < Ld(g,h) for all g,h € S
and so J is a strictly contractive mapping. By (14), we get d(Jf, f) < 1 < oc.
By Theorem 1.6, there exists a mapping T : X2 — Y which is a fixed point
of J such that d(J"f,T) — 0 as n — oo, which implies the equality T'(z,y) =
lim,, oo 2777 f(272,2"y). Since d(Jf, f) < 1 < oo, by (4) in Theorem 1.6, we
have (10). By (8) and (9), we get

|T(21 + 22, y) + T(x1 — 22,y) — 2T (21,y) — 2T (22, ), w||
< lim [2]7%"¢y (2" 21, 2" 20, 2"y, W)
n—oo

< lim L"¢1(x1, 22,y,w) =0,

n=s00
and
IT(z,2y1 + y2) + Tz, 251 — y2) — T(z,y1 — 2y2) — T'(z,y1 + y2)
+T(2x,y1 — y2) — 15T (z,y1) — 6T (2, 92), w||
< lim 12|75 po (2" 2, 2" Y1, 2"y, W)
< nhﬁn;(} L"¢o(x,y1,y2, w) =0

for all w € Y and all z,y,x1,22,y1,y2 € X. Hence T satisfies (3).
To prove the uniquness of T, assume that T} : X2 — Y is another solution
of (3) satistying (10). Then T; is a fixed point of J and by (10),

L
d(Jf,Th) =d(Jf,JI) < - <%
By (3) in Theorem 1.6, we have T' = T3. O

Theorem 2.4. Let ¢1,¢2 : X3 x Y — [0,00) be functions such that
¢i($7yasz) < |2|_5L¢i(2$72y722,w) (2 = 1?2) (15)
forall z,y,2 € X, w €Y and some L with 0 < L < 1. Suppose that f: X2 —
Y is a mapping satisfying f(x,0) = f(0,2) =0 for allx € X, (8) and (9). Then
there exists a unique quintic mapping T : X2 — Y satisfying (3) and
L
179) = Ty, vl < 7=y, w) (16)
forallw €Y and all x,y € X, where
U(z,y,w) = mazx{ 2| °d1(z, 2,2y, w), |2| " da(x,y,0,w)}.
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Proof. Putting yo = 0 and y; = ¥ in (9), we get

|27 (2.%) = s, ]| < 217 02 (2, 5,0,0) (1)
for all w € Y and all z,y € X. Putting 1 = x2 = § in (8), we get
127(Z.9) - o] < o1 (.5 ) -

for all w € Y and all z,y € X. Thus by (17) and (18), we have

y

2

) =221 (5) +2[1(50) 2 @) |

< max H22{23f(£ Q) f(f,yﬂ,w), ‘QQf(gw)—f(%y)va}
cmar{ e 4 ) )

272 2
S L maz{|2| 5¢1(937$a29a )7 ‘2| ¢2(I7y70aw)}

for all z,y € X and all w € Y. That is, we have

Ty
1224 (5.5) = F@y)wll < L W(ay,w) (19)
forall z,y € X and all w € Y.

Consider the set S = {h | h : XxX — Ywith h(z,0) = h(0,z) =0, Vz € X}
and the generalized metric d on S defined by

d(g,h) = inf{e € [0,00) | llg(z,y) — h(z,y), w|| < e¥(z,y,w), Yw € Y,Vz,y € X}.

Then (S,d) is a complete metric space([2]). Define a mapping J : S — S by
Jg(x,y) =2°g(%,4) forall z,y € X and all g € S. Let g,h € S and d(g,h) < ¢
for some non-negative real number . Then by (15), we have

1g(a,y) = Thia,y)ull = 12Plg(5. ) = h(5.5) vl
< |2 @(; > w)
<eL ¥(z,y,w),

and so d(Jg, Jh) < eL. This mean that d(Jg, Jh) < L d(g,h) for all g,h € S
and so J is a strictly contractive mapping. By (19), we get d(Jf, f) < L < oc.
By Theorem 1.6, there exists a mapping 7 : X2 — Y which is a fixed point
of J such that d(J"f,T) — 0 as n — oo, which imples the equality T'(z,y) =
limy, 00 257 f(5%, 5% ). Since d(J f, f) < L, by (4) in Theorem 1.6, we have (16)
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and by (8) and (9), we get
|T(z1 + 22, y) + T(z1 — 22,y) — 2T (21,y) — 2T (22, y), w||
< 1l 915n (ﬂ T2 Y )

n—r oo

< lim L"¢1(z1,22,y,w) =0,
n—o0

and
1T (x,2y1 + y2) + T(x,2y1 — y2) — T(2,y1 — 2y2) — T(x, y1 + y2)
+T(z,y1 — y2) — 15T (z,y1) — 6T (z,y2), w||
< lim [|2/5" (ﬁ b1 v )
_nl—>ngo| | ¢2 2n’2n’2n7w
< lim Ln¢2(3«"791ay27w) =0
n— oo

for all w € Y and all x,y, x1, 22,y1,y2 € X. Hence T satisfies (3).
To prove the uniquness of T, assume that T} : X2 — Y is another solution
of (3) satistying (16). Then Tj is a fixed point of J and by (16),

A1) = d(IfIT) <

17 < 00.
By (3) in Theorem 1.6, we have T' = Tj. O

As example of ¢1(z1,z2,y,w) and ¢a(z,y1,y2, w) in Theorem 2.3 and The-
orem 2.4, we can take ¢1(x1,xe,y,w) = 0 (||z1]|P + ||z2]|P + [|y||?)||w]| and
¢2(x,y1,y2,w) = |2‘4 ¢ (Hx”p + ||y1||p + HyQHP)Hw” for all z, Y,x1,%2,Y1,Y2 € X,
all w € Y and some positive real number 6. Then we have the following corollary.

Corollary 2.5. Let 0,p be positive real numbers with p # 5. Suppose that
f: X% — Y is a mapping satisfying f(z,0) = f(0,2) =0,

[ f(z1+ 22, y) + flz1 — 22,9) — 2f(21,y) — 2f (22, 9), w]|
S O(Jao]|” + flz2” + lylP)[lwl,
and
I1f(z,2y1 +y2) + f(2,2y1 — y2) — f(@,y1 — 2y2) — f(z, 91 +y2) + f(2,y1 — ¥2)
—15f(z,y1) = 6f (2, y2), wl| < [21*0(| =[P + [[ya [l + [ly=|P) w]|

forallw €Y and all x,y,x1,x2,y1,y2 € X. Then there exists a unique quintic
mapping T : X? — Y satisfying

||f(m,y) - T(w>y)7w||

2|20
il [mewf2, 2PHzIP + Iyl lwll, p>5 (20)

e maz(2l2ll? + 121 glP, 2Pl + gl el p <5

forallweY and z,y € X.
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Proof. Let ¢1 (21, x2,y,w) = 0 ([[z [P + |2 + [[y[|?) |lw]| and ¢2(z,y1, y2,w) =
2% 0 (Jlz]l” + lya P + lly2[”) [w]]. Note that
¢i(2xa 2y, 2z, w) = |2|p¢i(xa Y, 2, U}),
= 2I° 127" ¢s(@,y, 2, w) (i =1,2).
So if p > 5, by Theorem 2.3, we have (20). Note that
o (505 00) =P
= 2170 2P Pgi(x,y, 2,w0) (i=1,2).
So if p < 5, by Theorem 2.4, we have (20). O
As another example of ¢1(x,y,z,w) and ¢a2(z,y, z,w) in Theorem 2.3 and
Theorem 2.4, we can take ¢1(z,y, 2, w) = ¢2(z,y,z,w) = 6 [[|[P[ly[|?][=]"[w]

for all z,y,z € X, all w € Y and some positive real number p,q,r, 0. Then we
have the following corollary:

Corollary 2.6. Let p,q,r and 0 be positive real numbers with p 4+ q +r # 5.
Suppose that f : X2 — Y is a mapping satisfying f(z,0) =0,
[ f(z1 +22,y) + f(21 — 22,y) — 2f(21,y) — 2f(22,y), w||
<O [l [Pl ly " lwll,
and
1f (2, 2y1 4+ y2) + fl2, 2y1 — y2) — f@,y1 — 292) — f@,yn +y2) + (2,91 — y2)
= 15f(z,y1) — 6 (2, y2), wll < O [|z]Plya[*]ly2l"[w]]

forallw €Y and all x,y,z1,22,y1,y2 € X. Then there exists a unique quintic
mapping T : X2 — Y satisfying

230
e 2Pyl ], p+q+r>5

27‘
ek Iyl ], p+g+r <5

forallweY and all x,y € X.
Proof. Let ¢1(z,y, z,w) = ¢ao(x,y, z,w) = 0 ||z||?||ly]|?||z||"||w]]. Then we have
¢i(2,2y, 22, w) = |2PT1 " pi(z,y, 2, w)
= 127 2P0 ¢(2,y, 2, 0) (0= 1,2).
Hence if p + g +r > 5, by Theorem 2.3, we have (21). Note that
bi(x,y, z,w) = 2|7 PHII g (22, 2y, 22, w),
= [2]7% 2P (22, 2y,22,w) (i =1,2).
Thus if p+ g + 7 < 5, by Theorem 2.4, we have (21). O
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