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Abstract
A calculation of the Kullback-Leibler information of consecutive order statistics is complicated because it

depends on a multi-dimensional integral. Park (2014) discussed a representation of the Kullback-Leibler infor-
mation of the first r order statistics in terms of the hazard function and simplified the r-fold integral to a single
integral. In this paper, we first express the Kullback-Leibler information in terms of the reversed hazard function.
Then we establish a generalized result of Park (2014) to an arbitrary consecutive order statistics. We derive a
single integral form of the Kullback-Leibler information of an arbitrary block of order statistics; in addition, its
relation to the Fisher information of order statistics is discussed with numerical examples provided.

Keywords: cross entropy, entropy, Fisher information, Kullback-Leibler information, left-censoring,
order statistics, reversed hazard function

1. Introduction

Suppose that a random variable X has the distribution function F(x) and continuous density function
f (x). The differential entropy of X is defined as the expected value of − log f (x) and plays a vital role
to measure the uncertainty in a random variable. Teitler et al. (1986) expressed the entropy in terms
of the hazard function as

E(X) = 1 −
∫ ∞

−∞
f (x) log h(x)dx. (1.1)

The entropy of order statistics has been carefully studied by many authors including Wong and
Chen (1990), Park (1995) and Ebrahimi et al. (2004). Park (2005) investigated a single integral
representation of the entropy of the first r order statistics in terms of the hazard function as

E1···r:n = r −
r∑

i=1

log(n − i + 1) −
∫ ∞

−∞
log h(x)

r∑
i=1

fi:n(x)dx. (1.2)

The Kullback-Leibler (KL) information as a measure of discrepancy between two density func-
tions is defined as

KL( f : g) =
∫ ∞

−∞
f (x) log

f (x)
g(x)

dx, (1.3)
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which can be represented in terms of the relative risk (Park and Shin 2014). Based on this, Park (2014)
expressed the KL information of the first r order statistics in terms of the relative risk and studied its
relation with the Fisher information of order statistics.

The main goal of this article is to provide a general extension of the result in Park (2014) to an
arbitrary block of order sequence, namely Xr:n ≤ · · · ≤ Xs:n. We first express the entropy of order
statistics in terms of the (reversed) hazard function and extend this result to the KL information of an
arbitrary consecutive order sequence. We also explore its relation with the Fisher information of order
statistics. Finally, some numerical examples are provided in Section 5.

2. Entropy in Order Statistics

If we consider the reversed hazard function λ(x) = f (x)/F(x) rather than the hazard function in (1.1),
the entropy of a single random variable can be represented as

E1:1 = 1 −
∫ ∞

−∞
f (x) log λ(x)dx. (2.1)

Thus, we can obtain a simple representation of the entropy of the last order statistic as

En:n = − log n + 1 −
∫ ∞

−∞
fn:n(x) log λ(x)dx. (2.2)

Suppose we are interested in the entropy of the sequence of order statistics X1:n ≤ · · · ≤ Xn:n. Then
based on the Theorem 1 in Wong and Chen (1990), the entropy of X1:n ≤ · · · ≤ Xn:n is simplified as

E1···n:n = − log n! + nE1:1. (2.3)

Park (2005) derived a single integral representation of E1···r:n, which is a general result of (2.3). Simi-
larly, we have the identity of the entropy of the last s + 1 order statistics as

Lemma 1.

Es···n:n = (n − s + 1) −
n∑

i=s

log i −
∫ ∞

−∞
log λ(x)

n∑
i=s

fi:n(x)dx. (2.4)

Proof: A slight change in the proof of the Theorem 2.1 in Park (2005) gives the statement. In detail,
the Markov chain property of order statistics provide the identity Es···n:n = En:n+En−1|n:n+ · · ·+Es|s+1:n.
In addition, since fs|s+1:n can be considered as the pdf of the last order statistic among s sample as

fs|s+1:n(xs|xs+1) = s
f (xs)

F(xs+1)

[
F(xs)

F(xs+1)

]s−1

, (2.5)

we have from (2.2) that

Es|s+1:n = − log s + 1 −
∫ ∞

−∞
fs:n(x) log λ(x)dx. (2.6)

Hence, we can obtain the required result. �

The conditional entropy Er+1···n|r:n is equivalent to E1···n:n −E1···r:n as noted in Park (1995). In anal-
ogy to this, we can obtain the identity E1···s−1|s:n = E1···n:n −Es···n:n and we then have the representation
of the conditional entropy in terms of the (reversed) hazard function as follows.
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Lemma 2.

E1···s−1|s:n = (s − 1) −
s−1∑
i=1

log i −
∫ ∞

−∞
log λ(x)

s−1∑
i=1

fi:n(x)dx, (2.7)

Er+1···n|r:n = (n − r) −
n∑

i=r+1

log(n − i + 1) −
∫ ∞

−∞
log h(x)

n∑
i=r+1

fi:n(x)dx. (2.8)

Proof: Since E1···n:n = nE1:1 − log n! and
∑n

i=1 fi:n(x) = n f (x) noted in Wong and Chen (1990), we
obtain the relations by considering (2.2) and (2.4). �

From the identity Es···r:n = E1···r:n + Es···n:n − E1···n:n in Park (1995), we can express the entropy of
an arbitrary block of order statistics Er···s:n in terms of the (reversed) hazard function as Lemma 3.

Lemma 3.

Es···r:n = Cn,r,s + n
∫ ∞

−∞
f (x)Fr:n−1(x) log h(x)dx − n

∫ ∞

−∞
f (x)Fs−1:n−1(x) log λ(x)dx, (2.9)

where Cn,r,s = (r − s + 1) −∑r
i=1 log(n − i + 1) −∑n

i=s log i + log n!.

Proof: If we consider the relations
∑n

i=r+1 fi:n(x) = n f (x)Fr:n−1(x) and
∑r

i=1 fi:n(x) = n f (x)(1 −
Fr:n−1(x)), the result follows. �

3. KL Information in Terms of the Reversed Hazard Rate

Park and Shin (2014) investigated a representation of the KL information in terms of the relative risk
as

KL( f : g) =
∫ ∞

−∞
f (x)

{
hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1
}

dx (3.1)

and applied this result to a goodness-of-fit test in Type I censored case. In many practical situations,
such as when analyzing left censored data, one may be interested in the reversed relative risk (See,
Gupta et al. (2004) and the references therein). Hence, we shall express the KL information in terms
of the reversed relative risk as follows.

Lemma 4.

KL( f : g) =
∫ ∞

−∞
f (x)

{
λg(x)
λ f (x)

− log
λg(x)
λ f (x)

− 1
}

dx. (3.2)

Proof: By using the integration by parts, we have∫ ∞

−∞
f (x) log g(x)dx =

∫ ∞

−∞
f (x) log

g(x)
G(x)

dx +
∫ ∞

−∞
f (x) log G(x)dx (3.3)

=

∫ ∞

−∞
f (x) log λg(x)dx −

∫ ∞

−∞
f (x)

λg(x)
λ f (x)

dx. (3.4)

Since, KL( f : g) =
∫ ∞
−∞ f (x) log f (x)dx −

∫ ∞
−∞ f (x) log g(x)dx, the result follows by considering (2.1)

and (3.4). �
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Park and Shin (2014) also derived the Fisher information expression in Type I censored variable
min(X,C) based on the relation between the Fisher information and the KL information. Followed
by this result, the Fisher information in leftly censored variable can be discussed. If we consider the
leftly censored variable max(C, X) where C is the censoring point, the KL information can be adjusted
as

KLC( f : g) = F(C) log
F(C)
G(C)

+

∫ ∞

C
f (x) log

f (x)
g(x)

dx (3.5)

=

∫ ∞

C
f (x)

{
λg(x)
λ f (x)

− log
λg(x)
λ f (x)

− 1
}

dx. (3.6)

Since the Fisher information represents the curvature of the KL information, we obtain the leftly
censored Fisher information by using the second order expansion of the KL information as follows.

KLC( f (x; θ) : f (x; θ + ∆θ)) ≈ 1
2

(∆θ)2IC(θ), (3.7)

where IC(θ) =
∫ ∞

C

(
∂/∂θ log λ(x; θ)

)2 f (x; θ)dx. Therefore, we can derive the same result in Gupta et
al. (2004) for C = −∞.

4. KL Information of Consecutive Order Statistics

If we consider the discrepancy between f1:n(x) and g1:n(x), then from the result of (3.1), we have

KL1:n( f : g) = E f1:n

[
hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1
]
. (4.1)

If we are interested in the difference between fn:n(x) and gn:n(x), we can derive a simple expression
of KLn:n( f : g) using (3.2) as

KLn:n( f : g) = E fn:n

[
λg(x)
λ f (x)

− log
λg(x)
λ f (x)

− 1
]
. (4.2)

Park (2014) provided the representation of the KL information of the first r order statistics so a
general result of (4.1) as

KL1···r:n( f : g) =
∫ ∞

−∞

{
hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1
} r∑

i=1

fi:n(x)dx. (4.3)

It is now worth finding a representation of the KL information of the last order sequence. First,
we provide the following identities.

Lemma 5.

CEs···n:n = −
∫ ∞

−∞
fs···n:n(x) log gs···n:n(x)dx (4.4)

= −
n∑

i=s

log i −
∫ ∞

−∞

{
log λg(x) −

λg(x)
λ f (x)

} n∑
i=s

fi:n(x)dx, (4.5)

CE1···r:n = −
∫ ∞

−∞
f1···r:n(x) log g1···r:n(x)dx (4.6)

= −
r∑

i=1

log(n − i + 1) −
∫ ∞

−∞

{
log hg(x) −

hg(x)
h f (x)

} r∑
i=1

fi:n(x)dx. (4.7)
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Proof: Let us note that (4.5) can be expressed based on the Markov chain property of order statistics
as

−
n∑

i=s

∫ ∞

−∞

∫ xi+1

−∞
fi|i+1:n(xi) log gi|i+1:n(xi)dxi fi+1:n(xi+1)dxi+1. (4.8)

Since, fi|i+1:n can be considered to be the pdf f (x)/F(xi+1) of the last order statistics among i sample,
in view of (3.4), we have∫ xi+1

−∞
fi|i+1:n(xi) log gi|i+1:n(xi)dxi =

∫ xi+1

−∞
fi|i+1:n(xi)

{
log i + log λg(xi) −

λg(xi)
λ f (xi)

}
dxi. (4.9)

By putting (4.9) into (4.8), we get (4.5). The result of (4.6) can be simply derived by considering the
relation CE1···r:n( f : g) = KL1···r:n( f : g) + E1···r:n( f ). �

Finally, the KL information of the last s + 1 order statistics can be represented as

Theorem 1.

KLs···n:n( f : g) =
∫ ∞

−∞

{
λg(x)
λ f (x)

− log
λg(x)
λ f (x)

− 1
} n∑

i=s

fi:n(x)dx. (4.10)

Proof: The proof is done by considering KLs···n:n( f : g) = CEs···n:n( f : g) − Es···n:n( f ). �

The following identities of the cross entropy of order statistics can be obtained as the similar way
to the identity of the entropy in Wong and Chen (1990) and Park (1995).

CE1···n:n = nCE1:1 − log n!, (4.11)
CEs···r:n = CE1···r:n + CEs···n:n − CE1···n:n. (4.12)

Now, we present the joint cross entropy of consecutive order statistics Xs:n ≤ · · · ≤ Xr:n in terms of the
(reversed) hazard function.

Lemma 6.

CEs···r:n = Dn,r,s + n
∫ ∞

−∞
f (x)Fr:n−1(x)

{
log hg(x) −

hg(x)
h f (x)

}
dx (4.13)

− n
∫ ∞

−∞
f (x)Fs−1:n−1(x)

{
log λg(x) −

λg(x)
λ f (x)

}
dx,

where Dn,r,s = Cn,r,s − (r − s + 1) = −∑r
i=1 log(n − i + 1) −∑n

i=s log i + log n!.

Proof: The decomposition of the cross entropy in (4.12) gives the solution. �

Based on the previous lemma, we can provide the main result of this paper in the next theorem.

Theorem 2. The single integral representation of the KL information between fs···r:n and gs···r:n can
be expressed in terms of the (reversed) hazard function as follows.

KLs···r:n( f : g) = n
∫ ∞

−∞
f (x)Fs−1:n−1(x)

{
λg(x)
λ f (x)

− log
λg(x)
λ f (x)

− 1
}

dx (4.14)

− n
∫ ∞

−∞
f (x)Fr:n−1(x)

{
hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1
}

dx.
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Figure 1: The Kullback-Leibler (KL) information plot for Gamma(p, 1) and Exp(1, 1).

Proof: Note that (2.9) can be denoted as

Dn,r,s + n
∫ ∞

−∞
f (x)Fr:n−1(x)

{
log h f (x) − 1

}
dx − n

∫ ∞

−∞
f (x)Fs−1:n−1(x)

{
log λ f (x) − 1

}
dx.

Accordingly, the definition of the KL information leads to the conclusion. �

Using the Theorem 2, the Fisher information in the block of order statistics can be represented in
terms of the (reversed) hazard function. The result can be found in the following remark.

Remark 1.

KLs···r:n( f (x; θ) : f (x; θ + ∆θ)) ≈ 1
2

(∆θ)2Is···r:n(θ), (4.15)

where

Is···r:n(θ) = n
∫ ∞

−∞
f (x)Fs−1:n−1(x)

(
∂

∂θ
log λ f (x)

)2

dx − n
∫ ∞

−∞
f (x)Fr:n−1(x)

(
∂

∂θ
log h f (x)

)2

dx. (4.16)

5. Numerical Examples

Due to limited amount of time or money, it is common to observe censored data in experiments and
survival analysis. Especially when the number of (right) censored unit is predetermined but censoring
time is random, we call this type of censoring as Type II censoring. More generally, let us assume we
can only observe Xs, . . . , Xr consecutive sample out of n total items. Hence, the first s− 1 samples are
left-censored and the last n− r samples are right-censored. In this case, it might be an important issue
to predetermine s and r before the experiment in order to enhance statistical power under a certain
parametric model assumption. We provide simple numerical examples to illustrate this point based on
the main result in the Theorem 2. Let us consider the gamma(k, 1) and Weibull(k, 1) distribution as
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Figure 2: The Kullback-Leibler (KL) information plot for Weibull(p, 1) and Exp(1, 1).

f (x) and the standard exponential distribution as g(x) in (4.14). We further consider the three different
shape parameters in the gamma and Weibull distribution to be k = 0.8, 1.2, and 1.4. For the following
censoring schemes with the length of the order statistics 5 and 10: (s = 1, r = 5, n = 50), (s = 2, r =
6, n = 50), . . . , (s = 46, r = 50, n = 50) and (s = 1, r = 10, n = 50), (s = 2, r = 11, n = 50), . . . , (s =
41, r = 50, n = 50), we present the KL information plots in Figures 1 and 2. From the results, we
note that there is no monotonic change in the KL information while increasing the start point s in
both cases. A starting point around 10 is suitable for the gamma distribution against the standard
exponential distribution since it provides more information. However, we can get more information
as s stays away from the middle point for the Weibull distribution. In addition, we can check a logical
consequence that the KL information is increasing in the length of the order statistics and indicates
that we have more information as the sample size increases.

6. Conclusion

In this paper, we provided a representation of the KL information of an arbitrary consecutive order
statistics in terms of the (reversed) hazard function. Hence, we generalized the main result in Park
(2014) who provided the expression of the KL information of the first r order statistics in terms of
relative risk. We also discussed the representation of the Fisher information in order statistics in
terms of (reversed) hazard function based on the relation between the KL information and the Fisher
information. Afterwards, we considered the order statistics from the gamma and Weibull distribution
to illustrate the major point of this paper.

We hope that some related topics can be dealt with in future studies. For example, up to date, there
have been numerous studies about goodness-of-fit tests with censored data based on KL information
(Balakrishnan et al., 2007; Park, 2005; Park and Shin, 2014; Rad et al., 2011). However, a goodness-
of-fit test for data including both left and right censoring has not been done. We expect that this can
be conducted using the results provided in this paper.
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